DOI QR코드

DOI QR Code

Spatial Information Application Case for Appropriate Location Assessment of PM10 Observation Network in Seoul City

서울시 미세먼지 관측망 위치 적정성 평가를 위한 공간정보 활용방안

  • Received : 2017.10.10
  • Accepted : 2017.12.08
  • Published : 2017.12.10

Abstract

Recently, PM10 is becoming a main issue in Korea because it causes a variety of diseases, such as respiratory and ophthalmologic diseases. This research studied to spatial information application cases for evaluating the feasibility of the location for PM10 observation stations utilizing Geogrphic Information System(GIS) spatial analysis. The spatial Information application cases for optimal location assessment were investigated to properly manage PM10 observation stations which are closely related with public spatial data and health care. There are 31 PM10 observation stations in Seoul city and the observed PM10 data at these stations were utilized to understand the overall assessment of PM10 stations to properly manage using interpolation methods. The estimated PM10 using Inverse Distance Weighted(IDW) and Kriging techniques and the map of PM10 concentrations of monitoring stations in Seoul city were compared with public spatial data such as precipitation, floating population, elementary school location. On the basis of yearly, seasonal and daily PM10 concentrations were used to evaluate the feasibility analysis and the location of current PM10 monitoring stations. The estimated PM10 concentrations were compared with floating population and calculated 2015 PM10 distribution data using zonal statistical methods. The national spatial data could be used to analyze the PM10 pollution distribution and additional determination of PM10 monitoring sites. It is further suggested that the spatial evaluation of national spatial data can be used to determine new location of PM10 monitoring stations.

최근 미세먼지는 국내에서 중요한 사안으로 되어가고 있다. 왜냐하면 미세먼지는 호흡기 질환, 안과 질환과 같은 수많은 질병을 불러일으키기 때문이다. 본 연구는 GIS 공간분석 기술을 이용하여 PM10 관측소의 위치에 대한 적정성을 평가하기 위하여 공간정보의 활용 사례를 제시하였다. 미세먼지 측정소 최적 위치를 평가하기 위한 공간정보 활용사례는 국가 공간자료와 건강위해성과 밀접하게 관련있는 PM10 측정 자료의 최적 위치와 함께 조사되었다. 서울시에는 31개 관측소가 있으며, 이들 측정소에서 관측된 PM10 자료를 가지고 추정된 PM10 농도는 공간보간기법을 적용하여 적정한 측정소 위치평가기법을 제시하는데 적용하였다. 서울시에서 PM10 측정망의 농도지도와 IDW와 크리깅 방법으로 추정된 농도는 강우량, 유동인구, 초등학교 위치정보와 같은 국가공간정보와 비교하였다. 일평균, 계절평균, 연평균 등의 PM10 농도는 현재의 PM10 측정소 위치와 위치적정성을 분석하는데 사용하였다. PM10농도는 2015년 유동인구와 지역 통계분석법에 적용된 계산된 PM10 분포와 비교하였다. 국가공간데이터는 PM10 오염분포와 부가적인 PM10 모니터링 사이트를 분석하는데 적용 가능하였다. 본 연구의 향후 연구과제는 PM10 모니터링 측정소의 새로운 위치를 선정하는데 사용된 국가공간정보의 활용성을 제안하는데 있다.

Keywords

References

  1. 조홍래. 정종철. 2009. 공간보간 기법에 의한 서울시 PM10 분포 분석, 한국환경영향평가학회지. 18(1):31-39. Cho HR. Jeong, JC. 2009. The Distribution Analysis of PM10 in Seoul Using Spatial Interpolation Methods. KSEIA. 18(1):31-39.
  2. 정종철. 2014. 서울시 PM10의 시계열 공간 분포 분석, 한국지리정보학회지. 17(1):61-69. Jeong JC. 2014. A Spatial Distribution Analysis and Time Series Change of PM10 in Seoul City. KAGIS. 17(1):61-69. https://doi.org/10.11108/KAGIS.2014.17.1.061
  3. Boris A. 2012. High prevalence of childhood asthma in Northern Israel is linked to air pollution by particulate matter: evidence from GIS analysis and Bayesian Model Averaging. International Journal of Environmental Health Research 22(3):249-269. https://doi.org/10.1080/09603123.2011.634387
  4. Diema JE, Comrie AC. 2002. Predictive mapping of air pollution involving sparse spatial observations. EnvironmentalPollution.119(1):99-117. https://doi.org/10.1016/S0269-7491(01)00308-6
  5. Jaime E. Hart. 2009. Spatial Modeling of PM10 and NO2 in the Continental United States, 1985-2000. Environ Health Perspect. 2009 Nov; 117(11): 1690-1696. https://doi.org/10.1289/ehp.0900840
  6. Fuentes, M. 2002. Interpolation of nonstationary air pollution processes; a spatial spectral approach, Statistical Modelling. 2:281-298. https://doi.org/10.1191/1471082x02st034oa
  7. Fikret T. Meryem B. 2015.Analysis of PM10 Pollutant in Istanbul by Using Kriging and IDW Methods: Between 2003 and 2012. International Journal of Computer and Information Technology. 4(1):170-175.
  8. Rogas-Avellaneda, D. 2007. Spatial interpolation techniques for stimating levels of pollutant concentraions in the atmosphere. Revista Mexicana de Fisica, 53(6):447-454.
  9. Stijn Janssen. 2008. Spatial interpolation of air pollution measurements using CORINE land cover data. Atmosphere Environment. 42(1) : 2882- 2903.
  10. Shuting Li. Shujun Song. Xin Fei. 2011. Spatial characteristics of air pollution in the main city area of Chengdu, China. Geoinformatics, 2011 19th International Conference.
  11. Seoul City. 2015. Report of Air-Quality of Seoul City. pp. 25-26.
  12. Wasim J. Ghulan M. Hamaad R. 2015. A GIS based on Air Quality Assessment along the Roadside Environment in PAKISTAN. Poll Res. 34(1): 1-7.
  13. Wong D.W. Yuan, L. Perlin, S.A. 2004. Comparison of spatial interpolation methods for the estimation of air quality data. Journal of Exposure Analysis and Environmental Epidemiology. 14(1):404-415. https://doi.org/10.1038/sj.jea.7500338
  14. 서울시 대기환경정보. 2017. 서울시 대기환경정보[인터넷]. [http://cleanair.seoul.go.kr]. 2017년 10 월 2일 검색. Air Quality Information in Seoul City. 2017. Air Quality Information in Seoul City[Internet]. [http://cleanair.seoul.go.kr]. Last accessed 2 October 2017.
  15. I Seoul You 서울통계. 2017. 서울통계[인터넷]. [http://stat.seoul.go.kr]. 2017년 10월 2일 검색. I Seoul You Statistics of Seoul City. 2017. Statistics of Seoul City[Internet]. http://stat.seoul.go.kr]. Last accessed 2 October 2017.
  16. 서울특별시.2017. 자동기상관측시스템[인터넷]. [http://aws.seoul.go.kr/]. 2017년 10월 2일 검색. Seoul City. 2017. Automatic Weather System [Internet]. [http://aws.seoul.go.kr/]. Last accessed 2 October 2017.
  17. 공공데이터포털. 2017. 공공데이터포털[인터넷]. [https://www.data.go.kr/dataset]. 2017년 10 월 2일 검색. Open Data Portal. 2017. Open Data Portal [Internet]. [https://www.data.go.kr/dataset]. Last accessed 2 October 2017..