DOI QR코드

DOI QR Code

Electrochemical Performance of M2GeO4 (M = Co, Fe and Ni) as Anode Materials with High Capacity for Lithium-Ion Batteries

  • Received : 2017.10.16
  • Accepted : 2017.11.15
  • Published : 2017.12.31

Abstract

$M_2GeO_4$ (M = Co, Fe and Ni) was synthesized as an anode material for lithium-ion batteries and its electrochemical characteristics were investigated. The $Fe_2GeO_4$ electrode exhibited an initial discharge capacity of $1127.8mAh\;g^{-1}$ and better capacity retention than $Co_2GeO_4$ and $Ni_2GeO_4$. A diffusion coefficient of lithium ion in the $Fe_2GeO_4$ electrode was measured to be $12.7{\times}10^{-8}cm^2s^{-1}$, which was higher than those of the other two electrodes. The electrochemical performance of the $Fe_2GeO_4$ electrode was improved by coating carbon onto the surface of $Fe_2GeO_4$ particles. The carbon-coated $Fe_2GeO_4$ electrode delivered a high initial discharge capacity of $1144.9mAh\;g^{-1}$ with good capacity retention. The enhanced cycling performance was mainly attributed to the carbon-coated layer that accommodates the volume change of the active materials and improves the electronic conductivity. Our results demonstrate that the carbon-coated $Fe_2GeO_4$ can be a promising anode material for achieving high energy density lithium-ion batteries.

Keywords

References

  1. E. Karden, S. Ploumen, B. Fricke, T. Miller and K. Snyder, J. Power Sources, 2007, 168(1), 2-11. https://doi.org/10.1016/j.jpowsour.2006.10.090
  2. M. Armand and J. M. Tarascon, Nature, 2008, 451(7179), 652-657. https://doi.org/10.1038/451652a
  3. V. Etacheri, R. Marom, R. Elazari, G. Salitra and D. Aurbach, Energy Environ. Sci., 2011, 4(9), 3243-3262. https://doi.org/10.1039/c1ee01598b
  4. Z. Yang, J. Zhang, M. C. W. Kintner-Meyer, X. Lu, D. Choi, J. P. Lemmon and J. Liu, Chem. Rev., 2011, 111(5), 3577-3613. https://doi.org/10.1021/cr100290v
  5. J. B. Goodenough and K. S. Park, J. Am. Chem. Soc., 2013, 135(4), 1167-1176. https://doi.org/10.1021/ja3091438
  6. K. Persson, et al. Chem. Lett., 2010, 1(8), 1176-1180.
  7. N. A. Kaskhedikar and J. Maier, Adv. Mater., 2009, 21(25-26), 2664-2680. https://doi.org/10.1002/adma.200901079
  8. A.G. Kannan, S.H. Kim, H.S. Yang and D.-W. Kim, RSC Adv., 2016, 6(30), 25159-25166. https://doi.org/10.1039/C5RA27877E
  9. M. M. Thackerey, C. Wolverton and E. D. Isaacs, Energy Environ. Sci., 2012, 5(7), 7854-7863. https://doi.org/10.1039/c2ee21892e
  10. T.-Y. Kim, J.-B. Kim, H.-J. Ahn and S.-M. Lee, J. Electrochem. Sci. Technol., 2011, 2(4), 193-197. https://doi.org/10.5229/JECST.2011.2.4.193
  11. S.-H. Lee, J. Sung, and S.-S. Kim, J. Korean Electrochem. Soc., 2015, 18(2), 68-74. https://doi.org/10.5229/JKES.2015.18.2.68
  12. S.-H. Kim, S.-H. Yook, A.G. Kannan, S.K. Kim, C. Park and D.-W. Kim, Electrochim. Acta, 2016, 209, 278-284. https://doi.org/10.1016/j.electacta.2016.05.081
  13. X. Leng, S. Wei, Z. Jiang, J. Lian, G. Wang and Q. Jiang, Sci. Rep., 2015, 5, 16629 https://doi.org/10.1038/srep16629
  14. Z. Yu, H. Jiang, D. Gu, J. Li, L. Wang and L. Shen, J. Electrochem. Sci. Technol., 2016, 7(2), 170-178. https://doi.org/10.5229/JECST.2016.7.2.170
  15. R. Verrelli, R. Brescia, A. Scarpellini, L. Manna, B. Scrosati and J. Hassoun, RSC Adv., 2014, 4(106), 61855-61862.
  16. H. Su, Y. -F. Xu, S. -C. Feng, Z. -G. Wu, X. -P. Sun, C. -H. Shen, J. -Q. Wang, J. -T. Li, L. Huang and S. -G. Sun, ACS Appl. Mater. Interfaces, 2015, 7, 8488. https://doi.org/10.1021/am509198k
  17. H. Long, T. Shi, H. Hu, S. Jiang, S. Xi and Z. Tang, Sci. Rep., 2014, 4, 7413.
  18. S. Yuvaraj, S. Amaresh, Y. S. Lee and R. K. Selvan, RSC Adv., 2014, 4(13), 6407-6416. https://doi.org/10.1039/c3ra46588h
  19. S. Yuvaraj, K. Karthikeyan, L. Vasylechko and R. K. Selvan, Electrochim. Acta, 2015, 158, 446-456. https://doi.org/10.1016/j.electacta.2015.01.065
  20. S. Yuvaraj, K. Kaliyappan and R. K. Selvan, J. Colloid and Inter. Sci., 2017, 498, 76-84. https://doi.org/10.1016/j.jcis.2017.03.005
  21. S. Jin and C. Wang, Nano Energy, 2017, 7, 63.
  22. B. S. Hong, B. Liu, M. S. Mo, J. H. Huang, X. M. Liu and Y. T. Qian, Adv. Funct. Mater., 2003, 13(8), 639-647. https://doi.org/10.1002/adfm.200304373
  23. S. Yuvaraj, K. Karthikeyan, D. Kalpana, Y. S. Lee and R. K. Selvan, J. Colloid and Inter. Sci., 2016, 469, 47-56. https://doi.org/10.1016/j.jcis.2016.01.060
  24. F. Zhang, R. Zhang, Z. Zhang, H. Wang and J. Feng, Electrochim. Acta, 2014, 150, 211-217. https://doi.org/10.1016/j.electacta.2014.10.082
  25. S. Jin, G. Yang, H. Song, H. Cui and C. Wang, ACS Appl. Mater. Interfaces, 2015, 7(44), 24932-24943. https://doi.org/10.1021/acsami.5b08446
  26. Y. R. Lim, C. S. Jung, H. S. Im, K. Park, J. Park, W. Il Cho and E. H. Cha, J. Mater. Chem. A, 2016, 4(27), 10691-10699. https://doi.org/10.1039/C6TA02829B
  27. Jin, X. Li, H. Ming, H. Wang, Z. Jia, Y. Fu, J. Adkins, Q. Zhou and J. Zhang, RSC Adv., 2014, 4(12), 6083-6089. https://doi.org/10.1039/c3ra45904g
  28. C. Lai, Y. Y. Dou, X. Li and X. P. Gao, J. Power Sources, 2010, 195(11), 3676-3679. https://doi.org/10.1016/j.jpowsour.2009.12.077
  29. S. Li, X. Li, Y. Li, B. Yan, X. Song, L. Fan, H. Shan and D. Li, J. Alloys and Compd, 2017, 722, 278-286. https://doi.org/10.1016/j.jallcom.2017.06.093
  30. L. Luo, D. Li, J. Zhang, C. Chen, J. Zhu, H. Qiao, Y. Cai, K. Lu, X. Zhang and Q. Wei, Energy Technol., 2017, 5(8), 1364-1372. https://doi.org/10.1002/ente.201600686

Cited by

  1. as an Intercalation Anode Material for Sodium-Ion Hybrid Capacitors vol.166, pp.4, 2019, https://doi.org/10.1149/2.0641904jes