DOI QR코드

DOI QR Code

Lithium Bis(oxalate)borate as an Electrolyte Salt for Supercapacitors in Elevated Temperature Applications

  • Madzvamuse, Alfred (Department of Chemical and Biological Engineering, Hanbat National University) ;
  • Hamenu, Louis (Department of Chemical and Biological Engineering, Hanbat National University) ;
  • Mohammed, Latifatu (Department of Chemical and Biological Engineering, Hanbat National University) ;
  • Bon, Chris Yeajoon (Department of Chemical and Biological Engineering, Hanbat National University) ;
  • Kim, Sang Jun (Department of Chemical and Biological Engineering, Hanbat National University) ;
  • Park, Jeong Ho (Department of Chemical and Biological Engineering, Hanbat National University) ;
  • Ko, Jang Myoun (Department of Chemical and Biological Engineering, Hanbat National University)
  • 투고 : 2017.07.20
  • 심사 : 2017.11.08
  • 발행 : 2017.12.31

초록

The electrolyte plays one of the most significant roles in the performance of electrochemical supercapacitors. Most liquid organic electrolytes used commercially have temperature and potential range constraints, which limit the possible energy and power output of the supercapacitor. The effect of elevated temperature on a lithium bis(oxalate)borate(LiBOB) salt-based electrolyte was evaluated in a symmetric supercapacitor assembled with activated carbon electrodes and different electrolyte blends of acetonitrile(ACN) and propylene carbonate(PC). The electrochemical properties were investigated using linear sweep voltammetry, cyclic voltammetry, galvanostatic charge-discharge cycles, and electrochemical impedance spectroscopy. In particular, it was shown that LiBOB is stable at an operational temperature of $80^{\circ}C$, and that, blending the solvents helps to improve the overall performance of the supercapacitor. The cells retained about 81% of the initial specific capacitance after 1000 galvanic cycles in the potential range of 0-2.5 V. Thus, LiBOB/ACN:PC electrolytes exhibit a promising role in supercapacitor applications under elevated temperature conditions.

키워드

참고문헌

  1. C. Masarapu, H.F. Zeng, K.H. Hung, B. Wei, ACS Nano, 2009, 3(8), 2199-2206. https://doi.org/10.1021/nn900500n
  2. X. Lin, M. Salari, L.M.R. Arava, P.M. Ajayan, M.W. Grinstaff, Chem. Soc. Rev, 2016, 45(21), 5848-5887. https://doi.org/10.1039/C6CS00012F
  3. X. Lu, M. Yu, G. Wang, Y. Tong, Y. Li, Energy Environ. Sci, 2014, 7(7), 2160-2181. https://doi.org/10.1039/c4ee00960f
  4. K. Xu, Chem. Rev, 2004, 104(10), 4303-4418. https://doi.org/10.1021/cr030203g
  5. K. Xu, Chem. Rev, 2014, 114(23), 11503-11618. https://doi.org/10.1021/cr500003w
  6. J.B. Goodenough, Y. Kim, Chem. Mater, 2010, 22(3), 587-603. https://doi.org/10.1021/cm901452z
  7. B.W. Ricketts, C. Ton-That, J. Power Sources, 2000, 89(1), 64-69. https://doi.org/10.1016/S0378-7753(00)00387-6
  8. H. Andreas, J. Electrochem. Soc, 2015, 162(5), A5047-A5053. https://doi.org/10.1149/2.0081505jes
  9. J. W. Kim, S.H. Choi, J.S. Kim, J. Korean Electrochem. Soc., 2017, 20(2) 34-40. https://doi.org/10.5229/JKES.2017.20.2.34
  10. E.P. Roth, C.J. Orendorff, Interface, 2012, 21(2), 45-49.
  11. M. Marcinek, et al, Solid State Ionics, 2015, 276, 107-126. https://doi.org/10.1016/j.ssi.2015.02.006
  12. G. Xiong, A. Kundu, T. S. Fisher, Thermal effects in supercapacitors, 2015, Springer International Publishing.
  13. C. Zhong, Y. Deng, W. Hu, D. Sun, X. Han, J. Qiao, J. Zhang, Electrolytes for electrochemical supercapacitors, 2016, CRC Press.
  14. J. Jeong, H. Lee, H. Lee, M-H. Ryou, Y. M. Lee, J. Korean Electrochem. Soc., 2015, 18(2), 58-67. https://doi.org/10.5229/JKES.2015.18.2.58
  15. E. Frackowiak, Q. Abbas, F. Beguin, J. Energy Chem., 2013, 22(2), 226-240. https://doi.org/10.1016/S2095-4956(13)60028-5
  16. K. Xu, S. Zhang, T.R. Jow, W. Xu, C.A. Angell, Electrochem. Solid-State Lett., 2002, 5(1), A26-A29. https://doi.org/10.1149/1.1426042
  17. K. Xu, S.S. Zhang, U. Lee, J.L. Allen, T.R. Jow, J. Power Sources., 2005, 146(1), 79-85. https://doi.org/10.1016/j.jpowsour.2005.03.153
  18. W. Xu, C.A. Angell, Electrochem. Solid-State Lett., 2001, 4(1), E1-E4. https://doi.org/10.1149/1.1344281
  19. S-K. You, S-G. Park, J. Korean Electrochem. Soc., 2017, 20(1), 13-17. https://doi.org/10.5229/JKES.2017.20.1.13
  20. R. Younesi, G.M. Veith, P. Johansson, K. Edstrom, T. Vegge, Energy Environ. Sci., 2015, 8(7), 1905-1922. https://doi.org/10.1039/C5EE01215E
  21. E. Jonsson, P. Johansson, Phys. Chem., 2015, 17(5), 3697-3703.
  22. P. Johansson, J. Phys. Chem., 2006, 110(44), 2077-12080.
  23. V. Aravindan, J. Gnanaraj, S. Madhavi, H.K. Liu, Chem. - A Eur. J., 2011, 17(51), 14326-14346. https://doi.org/10.1002/chem.201101486
  24. J.W. Graydon, M. Panjehshahi, D.W. Kirk, J. Power Sources., 2014, 245, 822-829. https://doi.org/10.1016/j.jpowsour.2013.07.036
  25. F. Beguin, V. Presser, A. Balducci, E. Frackowiak, Adv. Mater.,2014, 26(14), 2219-2251. https://doi.org/10.1002/adma.201304137
  26. J.H. Won, M. Latifatu, M. Jang, H.S. Lee, B.-C.B.-C. Kim, L. Hamenu, J.H. Park, K.M. Kim, J.M. Ko, Synth. Met., 2015, 203, 31-36. https://doi.org/10.1016/j.synthmet.2015.02.010
  27. H. Kashani, L. Chen, Y. Ito, J. Han, A. Hirata, M. Chen, Nano Energy., 2016, 19, 391-400. https://doi.org/10.1016/j.nanoen.2015.11.029
  28. G. Xiong, A. Kundu, T.S. Fisher, Thermal Effects in Supercapacitors., 2015, 27-69.
  29. Z. Chen, W.Q. Lu, J. Liu, K. Amine, Electrochim. Acta., 2006, 51(16), 3322-3326. https://doi.org/10.1016/j.electacta.2005.09.027