References
- F. Brezzi and J. Pitkaranta, On the stabilization of finite element approximations of the Stokes equations, in Efficient Solutions of Elliptic Systems, Notes on Numerical Fluid Mechanics, Vol. 10, Vieweg+Teubner Verlag, Wiesbaden, 1984.
- T.J.R. Hughes, L.P. Franca and M. Balestra, A new finite element formulation for computational fluid dynamics: V. Circumventing the Babuska-Brezzi condition: a stable Petrov-Galerkin formulation of the Stokes problem accommodating equal-order interpolations, Computer Methods in Applied Mechanics and Engineering, 59 (1986), 85-99. https://doi.org/10.1016/0045-7825(86)90025-3
- T.J.R. Hughes and L.P. Franca, A new finite element formulation for computational fluid dynamics: VII. The Stokes problem with various well-posed boundary conditions: Symmetric formulations that converge for all velocity/pressure spaces, Computer Methods in Applied Mechanics and Engineering, 65 (1987), 85-96. https://doi.org/10.1016/0045-7825(87)90184-8
- F. Brezzi and J. Douglas Jr., Stabilized mixed methods for the Stokes problem, Numerische Mathematik, 53 (1988), 225-235. https://doi.org/10.1007/BF01395886
- J. Douglas Jr. and J.P.Wang, An absolutely stabilized finite element method for the Stokes problem, Mathematics of Computation, 52 (1989), 495-508. https://doi.org/10.1090/S0025-5718-1989-0958871-X
- C.R. Dohrmann and P.B. Bochev, A stabilized finite element method for the Stokes problem based on polynomial pressure projections, International Journal for Numerical Methods in Fluids, 46 (2004), 183-201. https://doi.org/10.1002/fld.752
- P.B. Bochev, C.R. Dohrmann and M.D. Gunzburger, Stabilization of low-order mixed finite elements for the Stokes equations, SIAM Journal on Numerical Analysis, 44 (2006), 82-101. https://doi.org/10.1137/S0036142905444482
- S. Ganesan, G. Matthies and L. Tobiska, Local projection stabilization of equal order interpolation applied to the Stokes problem, Mathematics of Computation, 77 (2008), 2039-2060. https://doi.org/10.1090/S0025-5718-08-02130-3
- J. Li and Y. He, A stabilized finite element method based on two local Gauss integrations for the Stokes equations, Journal of Computational and AppliedMathematics, 214 (2008), 58-65.
- H. Eichel, L. Tobiska and H. Xie, Supercloseness and superconvergence of stabilized loworder finite element discretizations of the Stokes problem, Mathematics of Computation, 80 (2011), 697-722. https://doi.org/10.1090/S0025-5718-2010-02404-4
- R. Verfurth, A posteriori error estimators for the Stokes equations, Numerische Mathematik, 55 (1989), 309-325. https://doi.org/10.1007/BF01390056
- R.E. Bank and B.D. Welfert, A posteriori error estimates for the Stokes problem, SIAM Journal on Numerical Analysis, 28 (1991), 591-623. https://doi.org/10.1137/0728033
- H. Zheng, Y. Hou and F. Shi, A posteriori error estimates of stabilization of low-order mixed finite elements for incompressible flow, SIAM Journal on Scientific Computing, 32 (2010), 1346-1360. https://doi.org/10.1137/090771508
- L. Song and M. Gao, A posteriori error estimates for the stabilization of low-order mixed finite elements for the Stokes problem, Computer Methods in Applied Mechanics and Engineering, 279 (2014), 410-424. https://doi.org/10.1016/j.cma.2014.07.004
- J.Wang, Y.Wang and X. Ye, A posteriori error estimate for stabilized finite element methods for the Stokes equations, International Journal of Numerical Analysis and Modeling, 9 (2012), 1-16.
- R. Stenberg and J. Videman, On the error analysis of stabilized finite element methods for the Stokes problem, SIAM Journal on Numerical Analysis, 53 (2015), 2626-2633. https://doi.org/10.1137/140999396
- D. Kay and D. Silvester, A posteriori error estimation for stabilized mixed approximations of the Stokes equations, SIAM Journal on Scientific Computing, 21 (1999), 1321-1336. https://doi.org/10.1137/S1064827598333715
- J. Xu and Z. Zhang, Analysis of recovery type a posteriori error estimators for mildly structured grids, Mathematics of Computation, 73 (2004), 1139-1152.
- R. Duran and R. Rodriguez, On the asymptotic exactness of Bank-Weiser's estimator, Numerische Mathematik, 62 (1992), 297-303. https://doi.org/10.1007/BF01396231
- A. Maxim, Asymptotic exactness of an a posteriori error estimator based on the equilibrated residual method, Numerische Mathematik, 106 (2007), 225-253. https://doi.org/10.1007/s00211-007-0064-3