The New Design of Brain Measurement System for Immersive Virtual Reality

가상현실에서의 뇌파측정을 위한 디자인 고찰 및 제안

  • Received : 2017.11.01
  • Accepted : 2017.11.13
  • Published : 2017.11.30

Abstract

With the technological development, benefits of Virtual Reality (VR) has become a key of medium in communication research. In addition, explaining human minds with physiological data has become more popular since more accurate and detailed data can be expressed. However, reading brain signals in a virtual environment setting with psychophysiological measures (e.g. EEG and fNIRS) has remained a difficulty for researchers due to a technical constraint. Since a combination of cables for brain measures attached to a head cap obstruct wearing a Head-Mounted Display (HMD) over the cap, measuring brain activities with multiple channels on several areas of the brain is inappropriate in the VR setting. Therefore, we have developed a new brain measurement cap that includes probe connectors and brackets enabling a direct connection to the HMD. We highly expect this method would contribute to cognitive psychology research measuring brain signals with new technology.

최근 인지과학의 활발한 연구와 기술의 발달로 인해 사회과학분야에서 정신생리학적 연구를 통한 뇌의 다양한 측정과 정교한 분석 기법이 개발 되었다. 그러나 뇌파를 이용한 뉴미디어활용에 관한 연구는 장비들을 장착하는 과정에서의 한계점으로 인해 진행되지 못하였다. 이러한 문제를 극복하고자, 가상현실장비를 착용한 상태에서도 전 영역의 뇌파측정이 가능한 캡을 디자인하고 활용방법을 제안한다.

Keywords

References

  1. Girouard, A., Solovey, E. T., Hirshfield, L. M., Peck, E. M., Chauncey, K., Sassaroli, A., Fantini, S. and Jacob, R. J. K. From Brain Signals to Adaptive Interfaces: using fNIRS in HCI. Brain-Computer Interfaces. pp. 221-237. 2010.
  2. Breiter, H. C., Etcoff, N. L., Whalen, P. J., Kennedy, W. A., Rauch, S. L., Buckner, R. L., Strauss, M. M., Hyman, S. E. and Rosen, B. R. Response and habituation of the human amygdala during visual processing of facial expression. Neuron. 17(5). pp. 875-887. 1996. https://doi.org/10.1016/S0896-6273(00)80219-6
  3. Johnson, B. T. and Eagly, A. H. Effects of involvement on persuasion: A meta-analysis. Psychology Bulletin. 106(2). pp. 290-314. 1989. https://doi.org/10.1037/0033-2909.106.2.290
  4. Hirshfield, L. M., Chauncey, K., Gulotta, R., Girouard, A., Solovey, E. T., Jacob, R. J., Sassaroli, A. and Fantini, S. Combining electroencephalograph and functional near infrared spectroscopy to explore users' mental workload. In International Conference on Foundations of Augmented Cognition. pp. 239-247. 2009.
  5. Klimesch, W. EEG alpha and theta oscillations reflect cognitive and memory performance: A review and analysis. Brain Resource. 29(2). pp. 169-195. 1999. https://doi.org/10.1016/S0165-0173(98)00056-3
  6. Chanel, G., Kronegg, J., Grandjean, D. and Pun, T. Emotion assessment: Arousal evaluation using EEG's and peripheral physiological signals. Lecture Notes Computer Science. 4105. pp. 530-537. 2006.
  7. Grimes, D., Tan. D. S., Hudson, S. E., Shenoy, P. S. and Rao, R. P. N. Feasibility and pragmatics of classifying working memory load with an electroencephalograph. In Proceedings of the 26th SIGCHI Conference on Human Factors in Computing Systems. p. 835. 2008.
  8. Karin, H., Schmidt, B., Dart, D., Beluk, N. and Huppert, T. Functional near-infrared spectroscopy (fNIRS) of brain function during active balancing using a video game system. Gait Posture, 35(3), pp. 367-372, 2012. https://doi.org/10.1016/j.gaitpost.2011.10.007
  9. Sato, H., Yahata, N., Funane, T., Takizawa, R., Katura, T., Atsumori, H., Nishimura, Y., Kinoshita, A., Kiguchi, M., Koizumi, H., Fukuda, M. and Kasai, K. A NIRS-fMRI investigation of prefrontal cortex activity during a working memory task. Neuroimage. 83. pp. 158-173. 2013. https://doi.org/10.1016/j.neuroimage.2013.06.043
  10. Herrmann, M. J., Ehlis, A. C. and Fallgatter, A. J. Prefrontal activation through task requirements of emotional induction measured with NIRS. Biological Psychology. 64(3). pp. 255-263. 2003. https://doi.org/10.1016/S0301-0511(03)00095-4
  11. Izzetoglu, K., Bunce, S., Onaral, B., Pourrezaei, K. and Chance, B. Functional Optical Brain Imaging Using Near-Infrared During Cognitive Tasks. International Journal of Human-Computer Interaction. 17(2). pp. 211-227. 2004.
  12. Biocca, F. The Cyborg's Dilemma : Progressive Embodiment in Virtual Environments Minding the Body , the Primordial Communication Medium. Journal of Computer-Mediated Communication. 3(3). pp. 1-29. 1997.
  13. Heeter, C. Being There: The Subjective Experience of Presence. Presence, 1(2), pp. 262-271. 1992. https://doi.org/10.1162/pres.1992.1.2.262
  14. Reeves, B. and Nass, C. How People Treat Computers, Television, and New Media Like Real People and Places. The Media Equation: How People Treat Computers, Television, and New Media Like Real People and Places. Communication Research. 34(3). pp. 19-36. 1998.
  15. McCabe, K., Houser, D., Ryan, L., Smith, V. and Trouard, T. A functional imaging study of cooperation in two-person reciprocal exchange. In Proceedings of the National Academy of Sciences. 98(20). pp. 11832-11835, 2001. https://doi.org/10.1073/pnas.211415698
  16. Rilling, J. K., Gutman. D. A., Zeh, T. R., Pagnoni, G., Berns, G. S. and Kilts, C. D. A neural basis for social cooperation. Neuron. 35(2). pp. 395-405. 2002. https://doi.org/10.1016/S0896-6273(02)00755-9
  17. Baumgartner, T., Valko, L., Esslen, M. and Jancke, L. Neural Correlate of Spatial Presence in an Arousing and Noninteractive Virtual Reality: An EEG and Psychophysiology Study. CyberPsychology and Behavior. 9(1). pp. 30-45. 2006. https://doi.org/10.1089/cpb.2006.9.30
  18. Schilbach, L., Koubeissi, M. Z., David, N., Vogeley, K. and Ritzl, E. K. Being with virtual others: Studying social cognition in temporal lobe epilepsy. Epilepsy and Behavior. 11(3), pp. 316-323. 2007. https://doi.org/10.1016/j.yebeh.2007.06.006
  19. Seraglia, B., Gamberini, L., Priftis, K., Scatturin, P., Martinelli, M. and Cutini, S. An exploratory fNIRS study with immersive virtual reality: a new method for technical implementation. Frontiers in Human Neuroscience. 5(1). 2011.