DOI QR코드

DOI QR Code

Linear shell elements for active piezoelectric laminates

  • Rama, Gil (Department of Structural Analysis, Berlin Institute of Technology) ;
  • Marinkovic, Dragan Z. (Department of Structural Analysis, Berlin Institute of Technology) ;
  • Zehn, Manfred W. (Department of Structural Analysis, Berlin Institute of Technology)
  • Received : 2017.07.01
  • Accepted : 2017.10.25
  • Published : 2017.12.25

Abstract

Piezoelectric composite laminates are a powerful material system that offers vast options to improve structural behavior. Successful design of piezoelectric adaptive structures and testing of control laws call for highly accurate, reliable and numerically efficient numerical tools. This paper puts focus onto linear and geometrically nonlinear static and dynamic analysis of smart structures made of such a material system. For this purpose, highly efficient linear 3-node and 4-node finite shell elements are proposed. Both elements employ the Mindlin-Reissner kinematics. The shear locking effect is treated by the discrete shear gap (DSG) technique with the 3-node element and by the assumed natural strain (ANS) approach with the 4-node element. Geometrically nonlinear effects are considered using the co-rotational approach. Static and dynamic examples involving actuator and sensor function of piezoelectric layers are considered.

Keywords

References

  1. Aladwani, A., Aldraihem, O. and Baz, A. (2014), "A distributed parameter cantilevered piezoelectric energy harvester with a dynamic magnifier", Mech. Adv. Mater. Struct., 21(7), 566-578. https://doi.org/10.1080/15376494.2012.699600
  2. Aridogan, U. and Basdogan, I. (2015), "A review of active vibration and noise suppression of plate-like structures with piezoelectric transducers", J. Intel. Mat. Syst. Str., 26(12), 1455-1476. https://doi.org/10.1177/1045389X15585896
  3. Berthelot, J.M. (1999), Composite materials: mechanical behavior and structural analysis, Springer-Verlag, New York, US.
  4. Biswal, A.R., Roy, T. and Behera, R.K. (2017), "Optimal vibration energy harvesting from nonprismatic piezolaminated beam", Smart Syst. Struct., 19(4), 403-413. https://doi.org/10.12989/sss.2017.19.4.403
  5. Bletzinger, K.U., Bischoff, M. and Ramm, E. (2000), "A unified approach for shear-locking-free triangular and rectangular shell finite elements", Comput. Struct. , 75(3), 321-334. https://doi.org/10.1016/S0045-7949(99)00140-6
  6. Braess, D. and Kaltenbacher, M. (2008), "Efficient 3D - finite element formulation for thin mechanical and piezoelectric structures", Int. J. Numer. Meth. Eng., 73(2), 147-161. https://doi.org/10.1002/nme.2060
  7. Carrera, E. (2003), "Theories and finite elements for multilayered plates and shells: A unified compact formulation with numerical assessment and benchmarking", Arch. Comput. Meth. Engng, 10, 215-296. https://doi.org/10.1007/BF02736224
  8. Carrera, E. and Valvano, S. (2017), "Analysis of laminated composite structures with embedded piezoelectric sheets by variable kinematic shell elements", J. Intel. Mat. Syst. Str., DOI: https://doi.org/10.1177/1045389X17704913
  9. Cinefra, M., Carrera, E. and Valvano, S. (2015a), "Variable Kinematic shell elements for the analysis of electro-mechanical problems", Mech. Adv. Mater. Struct., 22(1-2), 77-106. https://doi.org/10.1080/15376494.2014.908042
  10. Cinefra, M., Valvano, S. and Carrera, E. (2015b), "A layer-wise MITC9 finite element for the free-vibration analysis of plates with piezo-patches", Int. J. Smart Nano Mater., 6(2), 84-104.
  11. Crisfield M.A. (1991), Non-Linear Finite Element Analysis of Solids and Structures, Volume 1: Essentials, John Wiley & Sons, Chichester, England.
  12. Felippa, C. and Haugen, B. (2005), "A unified formulation of small-strain corotational finite elements: I. theory", Comput. Meth. Appl. Mech. Eng., 194, 2285-2335. https://doi.org/10.1016/j.cma.2004.07.035
  13. Gabbert, U., Duvigneau, F. and Ringwelski, S. (2017), "Noise control of vehicle drive systems", Facta Universitatis Series Mechanical Engineering, 15(2), 183-200. https://doi.org/10.22190/FUME170615009G
  14. Gabbert, U., Koppe, H., Seeger, F. and Berger, H. (2002), "Modeling of smart composite shell structures", J. Theor. Appl. Mech., 3(40), 575-593.
  15. Gabbert, U. and Tzou, H.S. (Eds.) (2000), Smart Structures And Structronic Systems, Kluwer Academic Publishers, Amsterdam, Holand
  16. Gupta, V.K., Seshu, P. and Kurien Isaac, K. (2004), "Finite element and experimental investigation of piezoelectric actuated smart shells", AIAA J., 42(10), 2112-2123. https://doi.org/10.2514/1.2902
  17. Huynh, T.C. and Kim, J.T. (2017), "Quantitative damage identification in tendon anchorage via PZT interface-based impedance monitoring technique", Smart Syst. Struct., 20(2), 181-195.
  18. Lee, S., Cho, B.C., Park, H.C., Goo, N.S. and Yoon K.J. (2004) "Piezoelectric actuator-sensor analysis using a three-dimensional assumed strain solid element", J. Intel. Mat. Syst. Str., 15(5), 329-338. https://doi.org/10.1177/1045389X04040079
  19. Lentzen, S., Klosowski, P. and Schmidt, R. (2007), "Geometrically nonlinear finite element simulation of smart piezolaminated plates and shells", Smart Mater. Struct., 16, 2265-2274. https://doi.org/10.1088/0964-1726/16/6/029
  20. Li, F.M., Yao, G. and Zhang, Y. (2016), "Active control of nonlinear forced vibration in a flexible beam using piezoelectric material", Mech. Adv. Mater. Struct., 23(3), 311-317. https://doi.org/10.1080/15376494.2014.981613
  21. Liu, G.R., Dai, K.Y. and Lim, K.M. (2004), "Static and vibration control of composite laminates integrated with piezoelectric sensors and actuators using the radial point interpolation method", Smart Mater.Struct., 13, 1438-1447. https://doi.org/10.1088/0964-1726/13/6/015
  22. Marinkovic, D. and Marinkovic, Z. (2012), "On FEM modeling of piezoelectric actuators and sensors for thin-walled structures", Smart Struct. Syst., 9(5), 411-426. https://doi.org/10.12989/sss.2012.9.5.411
  23. Marinkovic, D. and Rama, G. (2017), "Co-rotational shell element for numerical analysis of laminated piezoelectric composite structures", Composites Part B: Eng., 125, 144-156. https://doi.org/10.1016/j.compositesb.2017.05.061
  24. Marinkovic, D., Koppe H. and Gabbert, U. (2006), "Numerically efficient finite element formulation for modeling active composite laminates", Mech. Adv. Mater. Struct., 13(5), 379-392. https://doi.org/10.1080/15376490600777624
  25. Marinkovic, D., Koppe, H. and Gabbert, U. (2008) "Degenerated shell element for geometrically nonlinear analysis of thin-walled piezoelectric active structures", Smart Mater. Struct., 17(1), 1-10.
  26. Marinkovic, D., Koppe, H. and Gabbert, U. (2009), "Aspects of modeling piezoelectric active thin-walled structures", J. Intel. Mat. Syst. Str., 20(15), 1835-1844. https://doi.org/10.1177/1045389X09102261
  27. Marinkovic, D., Zehn, M. and Marinkovic, Z. (2012), "Finite element formulations for effective computations of geometrically nonlinear deformations", Adv. Eng. Softw., 50, 3-11. https://doi.org/10.1016/j.advengsoft.2012.04.005
  28. Masmoudi, S., Mahi, A.E. and Turki, S. (2015), "Use of piezoelectric as acoustic emission sensor for in situ monitoring of composite structures", Composites Part B: Eng., 80, 307-320. https://doi.org/10.1016/j.compositesb.2015.06.003
  29. Militello, C and Felippa C.A. (1990), "A variational justification of the assumed natural strain formulation of finite elements", NASA Contractor Report 189063.
  30. Nestorovic, T., Shabadi, S., Marinkovic, D. and Trajkov, M. (2013), "Modeling of piezoelectric smart structures by implementation of a user defined shell finite element", Facta Universitatis Series Mechanical Engineering, 11(1), 1-12. https://doi.org/10.2298/FUACE1301001S
  31. Nestorovic, T., Shabadi, S., Marinkovic, D. and Trajkov, M. (2014), "User defined finite element for modeling and analysis of active piezoelectric shell structures", Meccanica, 49(8), 1763-1774. https://doi.org/10.1007/s11012-014-9925-x
  32. Nguyen-Thoi, T., Phung-Van, P., Thai-Hoang, C. and Nguyen-Xuan, H. (2013), "A Cell-based Smoothed Discrete Shear Gap method (CS-DSG3) using triangular elements for static and free vibration analyses of shell structures", Int. J. Mech. Sci., 74, 32-45. https://doi.org/10.1016/j.ijmecsci.2013.04.005
  33. Nguyen, V.A., Zehn, M. and Marinkovic, D. (2016), "An efficient co-rotational FEM formulation using a projector matrix", Facta Universitatis Series Mechanical Engineering, 14(2), 227-240.
  34. Oveisi, A. and Nestorovic, T. (2016), "Mu-synthesis based active robust vibration control of an MRI inlet", Facta Universitatis Series Mechanical Engineering, 14(1), 37-53.
  35. Piefort, V. (2001), "Finite element modeling of piezoelectric active structures", Ph.D. Dissertation, Universite Libre de Bruxelle.
  36. Rabinovitch, O. (2005), "Geometrically nonlinear behavior of piezoelectric laminated plates", Smart Mater. Struct., 14(4), 785-798. https://doi.org/10.1088/0964-1726/14/4/038
  37. Rama, G. (2017), "A 3-Node piezoelectric shell element for linear and geometrically nonlinear dynamic analysis of smart structures", Facta Universitatis Series Mechanical Engineering, 15(1), 31-44. https://doi.org/10.22190/FUME170225002R
  38. Simoes Moita, J.M., Mota Soares, C.M. and Mota Soares, C.A. (2002), "Geometrically non-linear analysis of composite structures with integrated piezoelectric sensors and actuators", Compos. Struct., 57, 253-261. https://doi.org/10.1016/S0263-8223(02)00092-2
  39. To, C.W.S. and Liu, E. (2003), "Analysis of Laminated composite shell structures with piezoelectric components", Mech. Electromagnetic Solids, 3, 229-250.
  40. Valvano, S. and Carrera, E. (2017), "Multilayered plate elements with node-dependent kinematics for the analysis of composite and sandwich structures", Facta Universitatis Series Mechanical Engineering, 15(1), 1-30.
  41. Vertuccio, L., Guadagno, L., Spinelli, G., Lamberti, P., Tucci, V. and Russo, S. (2016), "Piezoresistive properties of resin reinforced with carbon nanotubes for health-monitoring of aircraft primarystructures", Composites Part B: Eng., 107, 192- 202. https://doi.org/10.1016/j.compositesb.2016.09.061
  42. Willberg, C. and Gabbert, U. (2012), "Development of a three-dimensional piezoelectric isogeometric finite element for smart structure applications", Acta Mech, 223, 1837-1850. https://doi.org/10.1007/s00707-012-0644-x
  43. Zemcik, R., Rolfes, R., Rose, M. and Tessmer, J. (2007), "High performance four node shell element with piezoelectric coupling for the analysis of smart laminated structures", Int. J. Numer. Meth. Eng., 70(8), 934-961. https://doi.org/10.1002/nme.1909
  44. Zhang, L.W., Song, Z.G. and Liew, K.M. (2016) "Optimal shape control of CNT reinforced functionally graded composite plates using piezoelectric patches", Composites Part B: Eng., 85, 140-149. https://doi.org/10.1016/j.compositesb.2015.09.044
  45. Zhang, S.Q., Chen, M., Zhao, G.Z., Wang, Z.X., Schmidt, R. and Qin X.S. (2017), "Modeling techniques for active shape and vibration control of macro-fiber composite laminated structures", Smart Syst. Struct.,19(6), 633-641.
  46. Zhang, S. (2014), "Nonlinear FE simulation and active vibration control of piezoelectric laminated thin-walled smart structures", Ph.D. Dissertation, Institute of General Mechanics RWTH Aachen University.