References
- Aladwani, A., Aldraihem, O. and Baz, A. (2014), "A distributed parameter cantilevered piezoelectric energy harvester with a dynamic magnifier", Mech. Adv. Mater. Struct., 21(7), 566-578. https://doi.org/10.1080/15376494.2012.699600
- Aridogan, U. and Basdogan, I. (2015), "A review of active vibration and noise suppression of plate-like structures with piezoelectric transducers", J. Intel. Mat. Syst. Str., 26(12), 1455-1476. https://doi.org/10.1177/1045389X15585896
- Berthelot, J.M. (1999), Composite materials: mechanical behavior and structural analysis, Springer-Verlag, New York, US.
- Biswal, A.R., Roy, T. and Behera, R.K. (2017), "Optimal vibration energy harvesting from nonprismatic piezolaminated beam", Smart Syst. Struct., 19(4), 403-413. https://doi.org/10.12989/sss.2017.19.4.403
- Bletzinger, K.U., Bischoff, M. and Ramm, E. (2000), "A unified approach for shear-locking-free triangular and rectangular shell finite elements", Comput. Struct. , 75(3), 321-334. https://doi.org/10.1016/S0045-7949(99)00140-6
- Braess, D. and Kaltenbacher, M. (2008), "Efficient 3D - finite element formulation for thin mechanical and piezoelectric structures", Int. J. Numer. Meth. Eng., 73(2), 147-161. https://doi.org/10.1002/nme.2060
- Carrera, E. (2003), "Theories and finite elements for multilayered plates and shells: A unified compact formulation with numerical assessment and benchmarking", Arch. Comput. Meth. Engng, 10, 215-296. https://doi.org/10.1007/BF02736224
- Carrera, E. and Valvano, S. (2017), "Analysis of laminated composite structures with embedded piezoelectric sheets by variable kinematic shell elements", J. Intel. Mat. Syst. Str., DOI: https://doi.org/10.1177/1045389X17704913
- Cinefra, M., Carrera, E. and Valvano, S. (2015a), "Variable Kinematic shell elements for the analysis of electro-mechanical problems", Mech. Adv. Mater. Struct., 22(1-2), 77-106. https://doi.org/10.1080/15376494.2014.908042
- Cinefra, M., Valvano, S. and Carrera, E. (2015b), "A layer-wise MITC9 finite element for the free-vibration analysis of plates with piezo-patches", Int. J. Smart Nano Mater., 6(2), 84-104.
- Crisfield M.A. (1991), Non-Linear Finite Element Analysis of Solids and Structures, Volume 1: Essentials, John Wiley & Sons, Chichester, England.
- Felippa, C. and Haugen, B. (2005), "A unified formulation of small-strain corotational finite elements: I. theory", Comput. Meth. Appl. Mech. Eng., 194, 2285-2335. https://doi.org/10.1016/j.cma.2004.07.035
- Gabbert, U., Duvigneau, F. and Ringwelski, S. (2017), "Noise control of vehicle drive systems", Facta Universitatis Series Mechanical Engineering, 15(2), 183-200. https://doi.org/10.22190/FUME170615009G
- Gabbert, U., Koppe, H., Seeger, F. and Berger, H. (2002), "Modeling of smart composite shell structures", J. Theor. Appl. Mech., 3(40), 575-593.
- Gabbert, U. and Tzou, H.S. (Eds.) (2000), Smart Structures And Structronic Systems, Kluwer Academic Publishers, Amsterdam, Holand
- Gupta, V.K., Seshu, P. and Kurien Isaac, K. (2004), "Finite element and experimental investigation of piezoelectric actuated smart shells", AIAA J., 42(10), 2112-2123. https://doi.org/10.2514/1.2902
- Huynh, T.C. and Kim, J.T. (2017), "Quantitative damage identification in tendon anchorage via PZT interface-based impedance monitoring technique", Smart Syst. Struct., 20(2), 181-195.
- Lee, S., Cho, B.C., Park, H.C., Goo, N.S. and Yoon K.J. (2004) "Piezoelectric actuator-sensor analysis using a three-dimensional assumed strain solid element", J. Intel. Mat. Syst. Str., 15(5), 329-338. https://doi.org/10.1177/1045389X04040079
- Lentzen, S., Klosowski, P. and Schmidt, R. (2007), "Geometrically nonlinear finite element simulation of smart piezolaminated plates and shells", Smart Mater. Struct., 16, 2265-2274. https://doi.org/10.1088/0964-1726/16/6/029
- Li, F.M., Yao, G. and Zhang, Y. (2016), "Active control of nonlinear forced vibration in a flexible beam using piezoelectric material", Mech. Adv. Mater. Struct., 23(3), 311-317. https://doi.org/10.1080/15376494.2014.981613
- Liu, G.R., Dai, K.Y. and Lim, K.M. (2004), "Static and vibration control of composite laminates integrated with piezoelectric sensors and actuators using the radial point interpolation method", Smart Mater.Struct., 13, 1438-1447. https://doi.org/10.1088/0964-1726/13/6/015
- Marinkovic, D. and Marinkovic, Z. (2012), "On FEM modeling of piezoelectric actuators and sensors for thin-walled structures", Smart Struct. Syst., 9(5), 411-426. https://doi.org/10.12989/sss.2012.9.5.411
- Marinkovic, D. and Rama, G. (2017), "Co-rotational shell element for numerical analysis of laminated piezoelectric composite structures", Composites Part B: Eng., 125, 144-156. https://doi.org/10.1016/j.compositesb.2017.05.061
- Marinkovic, D., Koppe H. and Gabbert, U. (2006), "Numerically efficient finite element formulation for modeling active composite laminates", Mech. Adv. Mater. Struct., 13(5), 379-392. https://doi.org/10.1080/15376490600777624
- Marinkovic, D., Koppe, H. and Gabbert, U. (2008) "Degenerated shell element for geometrically nonlinear analysis of thin-walled piezoelectric active structures", Smart Mater. Struct., 17(1), 1-10.
- Marinkovic, D., Koppe, H. and Gabbert, U. (2009), "Aspects of modeling piezoelectric active thin-walled structures", J. Intel. Mat. Syst. Str., 20(15), 1835-1844. https://doi.org/10.1177/1045389X09102261
- Marinkovic, D., Zehn, M. and Marinkovic, Z. (2012), "Finite element formulations for effective computations of geometrically nonlinear deformations", Adv. Eng. Softw., 50, 3-11. https://doi.org/10.1016/j.advengsoft.2012.04.005
- Masmoudi, S., Mahi, A.E. and Turki, S. (2015), "Use of piezoelectric as acoustic emission sensor for in situ monitoring of composite structures", Composites Part B: Eng., 80, 307-320. https://doi.org/10.1016/j.compositesb.2015.06.003
- Militello, C and Felippa C.A. (1990), "A variational justification of the assumed natural strain formulation of finite elements", NASA Contractor Report 189063.
- Nestorovic, T., Shabadi, S., Marinkovic, D. and Trajkov, M. (2013), "Modeling of piezoelectric smart structures by implementation of a user defined shell finite element", Facta Universitatis Series Mechanical Engineering, 11(1), 1-12. https://doi.org/10.2298/FUACE1301001S
- Nestorovic, T., Shabadi, S., Marinkovic, D. and Trajkov, M. (2014), "User defined finite element for modeling and analysis of active piezoelectric shell structures", Meccanica, 49(8), 1763-1774. https://doi.org/10.1007/s11012-014-9925-x
- Nguyen-Thoi, T., Phung-Van, P., Thai-Hoang, C. and Nguyen-Xuan, H. (2013), "A Cell-based Smoothed Discrete Shear Gap method (CS-DSG3) using triangular elements for static and free vibration analyses of shell structures", Int. J. Mech. Sci., 74, 32-45. https://doi.org/10.1016/j.ijmecsci.2013.04.005
- Nguyen, V.A., Zehn, M. and Marinkovic, D. (2016), "An efficient co-rotational FEM formulation using a projector matrix", Facta Universitatis Series Mechanical Engineering, 14(2), 227-240.
- Oveisi, A. and Nestorovic, T. (2016), "Mu-synthesis based active robust vibration control of an MRI inlet", Facta Universitatis Series Mechanical Engineering, 14(1), 37-53.
- Piefort, V. (2001), "Finite element modeling of piezoelectric active structures", Ph.D. Dissertation, Universite Libre de Bruxelle.
- Rabinovitch, O. (2005), "Geometrically nonlinear behavior of piezoelectric laminated plates", Smart Mater. Struct., 14(4), 785-798. https://doi.org/10.1088/0964-1726/14/4/038
- Rama, G. (2017), "A 3-Node piezoelectric shell element for linear and geometrically nonlinear dynamic analysis of smart structures", Facta Universitatis Series Mechanical Engineering, 15(1), 31-44. https://doi.org/10.22190/FUME170225002R
- Simoes Moita, J.M., Mota Soares, C.M. and Mota Soares, C.A. (2002), "Geometrically non-linear analysis of composite structures with integrated piezoelectric sensors and actuators", Compos. Struct., 57, 253-261. https://doi.org/10.1016/S0263-8223(02)00092-2
- To, C.W.S. and Liu, E. (2003), "Analysis of Laminated composite shell structures with piezoelectric components", Mech. Electromagnetic Solids, 3, 229-250.
- Valvano, S. and Carrera, E. (2017), "Multilayered plate elements with node-dependent kinematics for the analysis of composite and sandwich structures", Facta Universitatis Series Mechanical Engineering, 15(1), 1-30.
- Vertuccio, L., Guadagno, L., Spinelli, G., Lamberti, P., Tucci, V. and Russo, S. (2016), "Piezoresistive properties of resin reinforced with carbon nanotubes for health-monitoring of aircraft primarystructures", Composites Part B: Eng., 107, 192- 202. https://doi.org/10.1016/j.compositesb.2016.09.061
- Willberg, C. and Gabbert, U. (2012), "Development of a three-dimensional piezoelectric isogeometric finite element for smart structure applications", Acta Mech, 223, 1837-1850. https://doi.org/10.1007/s00707-012-0644-x
- Zemcik, R., Rolfes, R., Rose, M. and Tessmer, J. (2007), "High performance four node shell element with piezoelectric coupling for the analysis of smart laminated structures", Int. J. Numer. Meth. Eng., 70(8), 934-961. https://doi.org/10.1002/nme.1909
- Zhang, L.W., Song, Z.G. and Liew, K.M. (2016) "Optimal shape control of CNT reinforced functionally graded composite plates using piezoelectric patches", Composites Part B: Eng., 85, 140-149. https://doi.org/10.1016/j.compositesb.2015.09.044
- Zhang, S.Q., Chen, M., Zhao, G.Z., Wang, Z.X., Schmidt, R. and Qin X.S. (2017), "Modeling techniques for active shape and vibration control of macro-fiber composite laminated structures", Smart Syst. Struct.,19(6), 633-641.
- Zhang, S. (2014), "Nonlinear FE simulation and active vibration control of piezoelectric laminated thin-walled smart structures", Ph.D. Dissertation, Institute of General Mechanics RWTH Aachen University.