DOI QR코드

DOI QR Code

Detection of Frame Deletion Using Coding Pattern Analysis

부호화 패턴 분석을 이용한 동영상 삭제 검출 기법

  • 홍진형 (한국항공대학교 항공전자정보공학부) ;
  • 양윤모 (한국항공대학교 항공전자정보공학부) ;
  • 오병태 (한국항공대학교 항공전자정보공학부)
  • Received : 2017.09.05
  • Accepted : 2017.10.26
  • Published : 2017.11.30

Abstract

In this paper, we introduce a technique to detect the video forgery using coding pattern analysis. In the proposed method, the recently developed standard HEVC codec, which is expected to be widely used in the future, is used. First, HEVC coding patterns of the forged and the original videos are analyzed to select the discriminative features, and the selected feature vectors are learned through the machine learning technique to model the classification criteria between two groups. Experimental results show that the proposed method is more effective to detect frame deletions for HEVC-coded videos than existing works.

본 논문에서는 동영상의 압축 정보를 이용하여 동영상 조작 시 발생하는 특징 패턴을 분석하여 동영상의 삭제 여부를 검출하는 기법에 대해 소개한다. 제안 방식에서는 최근 표준 코덱으로 개발되어 향후 널리 사용될 것으로 예상되는 HEVC 코덱을 이용한다. 우선 조작된 동영상과 그렇지 않은 동영상의 HEVC 부호화 패턴 중 분류하기가 용이한 여러 패턴들을 분석하여 특징벡터로 선정하고, 선정된 특징벡터를 기계학습을 통해 학습하여 두 그룹 간의 분류 기준을 모델링하여 동영상에 대한 삭제 여부를 판단한다. 실험 결과, 제안한 방식이 이전의 연구 결과에 비해 HEVC 코덱 환경에서 더욱 효과적으로 삭제 여부를 판단함을 확인하였다.

Keywords

References

  1. S. Milani, M. Fontani, P. Bestagini, M. Barni, A. Piva, M. Tagliasacchi, and S. Tubaro, "An overview on video forensics," APSIPA Transactions on Signal and Information Processing, 1, 2012.
  2. J. Lukas, J. Fridrich, and M. Goljan, "Digital camera identification from sensor pattern noise," IEEE Transactions on Information Forensics and Security, 1.2: 205-214, 2006. https://doi.org/10.1109/TIFS.2006.873602
  3. L. Yu, H. Wang, Q. Han, X. Niu, SM. Yiu, J. Fang, and Z. Wang, "Exposing frame deletion by detecting abrupt changes in video streams," Neurocomputing, 205: 84-91, 2016. https://doi.org/10.1016/j.neucom.2016.03.051
  4. T. Shanableh, "No-reference PSNR identification of MPEG video using spectral regression and reduced model polynomial networks," IEEE Signal Processing Letters, 17(8), 2010.
  5. T. Shanableh, "Detection of frame deletion for digital video forensics," Digital Investigation, 10.4: 350-360, 2013. https://doi.org/10.1016/j.diin.2013.10.004
  6. H. Lee, J. Kim, H. Y. Kim, and J. S. Choi, "A Performance comparison of HEVC with H. 264 and MPEG-2 for HD Sequences." Proceedings of the Korean Society of Broadcast Engineers Conference. The Korean Institute of Broadcast and Media Engineers.
  7. Je-U. Kim, J. H. Park, Y. H. Kim, and B. H. Choe, "Application View for High Efficiency Video Coding." Broadcasting and Media Magazine 15.
  8. Y. Ahn, T. Hwang, S. Yoo, W. J. Han, and D. Sim, "Statistical characteristics and complexity analysis of HEVC encoder software." Journal of Broadcast Engineering 17.6, 1091-1105, 2012. https://doi.org/10.5909/JBE.2012.17.6.1091
  9. W. Wang, and H. Farid, "Exposing digital forgeries in video by detecting double MPEG compression," In: Proceedings of the 8th workshop on Multimedia and security. ACM, 37-47, 2006.
  10. W, Wang, and H. Farid, "Exposing digital forgeries in video by detecting double quantization," In: Proceedings of the 11th ACM workshop on Multimedia and security. ACM, 39-48, 2009.
  11. Y. Su and J. Xu, "Detection of double-compression in MPEG-2 videos," Intelligent Systems and Applications (ISA), 2010 2nd International Workshop on. IEEE, 2010.
  12. T. Shanableh, "Prediction of structural similarity index of compressed video at a macroblock level," IEEE Signal Processing Letters, May, 18(5), 2011
  13. D. Vazquez-Padin, M. Fontani, T. Bianchi, P. Comesaña, A. Piva, and M. Barni, "Detection of video double encoding with GOP size estimation," In: Information Forensics and Security (WIFS), 2012 IEEE International Workshop on. IEEE, 2012. 151-156.
  14. A. Gironi, M. Fontani, T. Bianchi, A. Piva, and M. Barni, "A video forensic technique for detecting frame deletion and insertion," In: Acoustics, Speech and Signal Processing (ICASSP), 2014 IEEE International Conference on. IEEE, 6226-6230, 2014.
  15. Q. Dong, G. Yang, and N. Zhu, "A MCEA based passive forensics scheme for detecting frame-based video tampering," Digital Investigation, 9.2: 151-159, 2012. https://doi.org/10.1016/j.diin.2012.07.002
  16. Y. Su, J. Zhang, J. Liu, "Exposing digital video forgery by detecting motion-compensated edge artifact," In: Computational Intelligence and Software Engineering, 2009. CiSE 2009. International Conference on. IEEE, 1-4, 2009.
  17. X. Jiang, W. Wang, T. Sun, YQ. Shi, and S. Wang, "Detection of double compression in MPEG-4 videos based on Markov statistics," IEEE Signal Processing Letters, 20.5: 447-450, 2013. https://doi.org/10.1109/LSP.2013.2251632