DOI QR코드

DOI QR Code

Dilution methods for combustion aerosol measurement from stationary emission sources: A review

고정 오염원의 연소과정에서 발생하는 먼지를 측정하기 위한 희석방법 연구동향

  • Woo, Chang Gyu (Department of Eco-Machinery Systems, Korea Institute of Machinery & Materials) ;
  • Kim, Hak-Joon (Department of Eco-Machinery Systems, Korea Institute of Machinery & Materials) ;
  • Kim, Yong-Jin (Department of Eco-Machinery Systems, Korea Institute of Machinery & Materials) ;
  • Han, Bangwoo (Department of Eco-Machinery Systems, Korea Institute of Machinery & Materials) ;
  • Kang, Su Ji (Clean Power Generation Laborator, KEPCO Research Institute) ;
  • Chun, Sung-Nam (Clean Power Generation Laborator, KEPCO Research Institute)
  • 우창규 (한국기계연구원 환경기계연구실) ;
  • 김학준 (한국기계연구원 환경기계연구실) ;
  • 김용진 (한국기계연구원 환경기계연구실) ;
  • 한방우 (한국기계연구원 환경기계연구실) ;
  • 강수지 (전력연구원 청정발전연구소) ;
  • 천성남 (전력연구원 청정발전연구소)
  • Received : 2017.11.14
  • Accepted : 2017.11.29
  • Published : 2017.12.31

Abstract

For precise particle measurements in combustion environments, various dilution sampling methods were compared. Dilution equipments using dilution tunnels and hot/cold dilution with porous tube dilutors were most frequently used so far. The combination of porous tube dilutor and ejector diluter has relatively small footprint, and it results in lower particle losses compared to other methods. To determine the portion of condensable particulate matter, proper temperature control and flow control is required.

Keywords

References

  1. Brockmann, J. E., Liu, B. Y. H., and McMurry, P. H. (1984). A Sample Extraction Diluter for Ultrafine Aerosol Sampling. Aerosol Science and Technology, 3, 441-451. https://doi.org/10.1080/02786828408959031
  2. Burtscher, H., Baltensperger, U., Bukowiecki, N., Cohn, P., Huglin, C., Mohr, M., Matter, U., Nyeki, S., Schmatloch, V., Streit, N., and Weingartner, E. (2001). Separation of volatile and non-volatile aerosol fractions by thermodesorption: instrumental development and applications. Journal of Aerosol Science, 32, 427-442. https://doi.org/10.1016/S0021-8502(00)00089-6
  3. Burtscher, H. (2005). Physical characterization of particulate emissions from diesel engines: a review. Journal of Aerosol Science, 36, 896-932. https://doi.org/10.1016/j.jaerosci.2004.12.001
  4. Desantes, J. M., Bermudez, V., Molina, S. and Linares, W. G. (2011). Methodology for measuring exhaust aerosol size distributions using an engine test under transient operating conditions. Measurement Science and Technology, 22, 115101. https://doi.org/10.1088/0957-0233/22/11/115101
  5. Deuerling, C. F., Maguhn, J., Nordsieck, H. O., Warnecke, R., and Zimmermann, R. (2010). Measurement system for characterization of gas and particle phase of high temperature combustion aerosols, Aerosol Science and Technology, 44, 1-9 https://doi.org/10.1080/02786820903325402
  6. Hildemann, L. M., Cass, G. R., and Markowski, G. R. (1989). A Dilution Stack Sampler for Collection of Organic Aerosol Emissions: Design, Characterization and Field Tests. Aerosol Science and Technology, 10, 193-204. https://doi.org/10.1080/02786828908959234
  7. Hueglin, C., Scherrer, L., and Burtscher, H. (1997). An accurate, continuously adjustable dilution system (1:10 to 1:104) for submicron aerosols. Journal of Aerosol Science, 28, 1049-1055. https://doi.org/10.1016/S0021-8502(96)00485-5
  8. Jaiprakash, Habib, G., and Kumar, S. (2016). Evaluation of portable dilution system for aerosol measurement from stationary and mobile combustion sources. Aerosol Science and Technology, 50, 717-731. https://doi.org/10.1080/02786826.2016.1178502
  9. Kim, J. H., and Hwang, I. J. (2016). The characterization of PM, PM10, and PM2.5, from stationary sources, Journal of Korean Society for Atmospheric Environment, 32(6), 603-612. https://doi.org/10.5572/KOSAE.2016.32.6.603
  10. Koch, W., Lodding, H. and Munzinger, F. (1988). Verdunnungsystem fur die Messung Hochkonzenrierter Aerosole mit optischen Partikelzahler. Staub-Reinhaltung der Luft, 48, 341-344.
  11. Leskinen, J., Joutsensaari, J., Lyyranen, J., Koivisto, J., Ruusunen, J., Jarvela, M., Tuomi, T., Hameri, K., Auvinen, A., and Jokiniemi, J. (2012). Comparison of nanoparticle measurement instruments for occupational health applications. Journal of Nanoparticle Research, 14(2), 1-16.
  12. Li, X., Wang, S., Duan, L., Hao, J., and Long, Z. (2011). Design of a Compact Dilution Sampler for Stationary Combustion Sources. Journal of the Air & Waste Management Association, 61, 1124-1130. https://doi.org/10.1080/10473289.2011.604556
  13. Li, J., Qi, Z., Li, M., Wu, D., Zhou, C., Lu, S., Yan, J., and Li, X. (2017). Physical and Chemical Characteristics of Condensable Particulate Matter from an Ultralow-Emission Coal-Fired Power Plant. Energy & Fuels, 31, 1778-1785. https://doi.org/10.1021/acs.energyfuels.6b02919
  14. Lighty, J. S., Veranth, J. M., and Sarofim, A. F. (2000). Combustion Aerosols: Factors Governing Their Size and Composition and Implications to Human Health. Journal of the Air & Waste Management Association, 50, 1565-1618. https://doi.org/10.1080/10473289.2000.10464197
  15. Lipsky, E., Stanier, C. O., Pandis, S. N., and Robinson, A. L. (2002). Effects of Sampling Conditions on the Size Distribution of Fine Particulate Matter Emitted from a Pilot-Scale Pulverized-Coal Combustor. Energy & Fuels, 16, 302-310. https://doi.org/10.1021/ef0102014
  16. Lipsky, E. M., Pekney, N. J., Walbert, G. F., O'Dowd, W. J., Freeman, M. C., and Robinson, A. (2004). Effects of Dilution Sampling on Fine Particle Emissions from Pulverized Coal Combustion. Aerosol Science and Technology, 38, 574-587. https://doi.org/10.1080/02786820490479851
  17. Lipsky, E. M. and Robinson, A. L. (2005). Design and Evaluation of a Portable Dilution Sampling System for Measuring Fine Particle Emissions. Aerosol Science and Technology, 39, 542-553. https://doi.org/10.1080/027868291004850
  18. Lyyranen, J., Jokiniemi, J., Kauppinen, E. I., and Joutsensaari, J. (1999). Aerosol characterisation in medium-speed diesel engines operating with heavy fuel oils. Journal of Aerosol Science, 30, 771-784. https://doi.org/10.1016/S0021-8502(98)00763-0
  19. Lyyrӓnen, J., Jokiniemi, J., Kauppinen, E. I., Backman, U., and Vesala, H. (2004). Comparison of Different Dilution Methods for Measuring Diesel Particle Emissions. Aerosol Science and Technology, 38, 12-23. https://doi.org/10.1080/02786820490247579
  20. Maguhn, J., Karg, E., Kettrup, A., and Zimmermann, R. (2003). On-line Analysis of the Size Distribution of Fine and Ultrafine Aerosol Particles in Flue and Stack Gas of a Municipal Waste Incineration Plant: Effects of Dynamic Process Control Measures and Emission Reduction Devices. Environmental Science & Technology, 37, 4761-4770. https://doi.org/10.1021/es020227p
  21. Mikkanen, P., Kauppinen, E. I., Pyykonen, J., Jokiniemi, J. K., Aurela, M., Vakkilainen, E. K., and Janka, K. (1999). Alkali Salt Ash Formation in Four Finnish Industrial Recovery Boilers. Energy & Fuels, 13, 778-795. https://doi.org/10.1021/ef980189o
  22. Mikkanen, P., Jokiniemi, J. K., Kauppinen, E. I., and Vakkilainen, E. K. (2001). Coarse ash particle characteristics in a pulp and paper industry chemical recovery boiler. Fuel, 80, 987-999. https://doi.org/10.1016/S0016-2361(00)00195-2
  23. Reda, A. A., Czech, H., Schnelle-Kreis, J., Sippula, O., Orasche, J., Weggler, B., Abbaszade, G., Arteaga-Salas, J. M., Kortelainen, M., Tissari, J., Jokiniemi, J., Streibel, T., and Zimmermann, R. (2015a). Analysis of Gas-Phase Carbonyl Compounds in Emissions from Modern Wood Combustion Appliances: Influence of Wood Type and Combustion Appliance. Energy & Fuels, 29, 3897-3907. https://doi.org/10.1021/ef502877c
  24. Reda, A. A., Schnelle-Kreis, J., Orasche, J., Abbaszade, G., Lintelmann, J., Arteaga-Salas, J. M., Stengel, B., Rabe, R., Harndorf, H., Sippula, O., Streibel, T., and Zimmermann, R. (2015b). Gas phase carbonyl compounds in ship emissions: Differences between diesel fuel and heavy fuel oil operation. Atmospheric Environment, 112, 370-380. https://doi.org/10.1016/j.atmosenv.2015.03.057
  25. Saarnio, K., Frey, A., Niemi, J. V., Timonen, H., Ronkko, T., Karjalainen, P., Vestenius, M., Teinila, K., Pirjola, L., Niemela, V., Keskinen, J., Hayrinen, A., and Hillamo, R. (2014). Chemical composition and size of particles in emissions of a coal-fired power plant with flue gas desulfurization. Journal of Aerosol Science, 73, 14-26. https://doi.org/10.1016/j.jaerosci.2014.03.004
  26. Streibel, T., Schnelle-Kreis, J., Czech, H., Harndorf, H., Jakobi, G., Jokiniemi, J., Karg, E., Lintelmann, J., Matuschek, G., Michalke, B., Müller, L., Orasche, J., Passig, J., Radischat, C., Rabe, R., Reda, A., Ruger, C., Schwemer, T., Sippula, O., Stengel, B., Sklorz, M., Torvela, T., Weggler, B., and Zimmermann, R. (2017). Aerosol emissions of a ship diesel engine operated with diesel fuel or heavy fuel oil. Environmental Science and Pollution Research, 24, 10976-10991. https://doi.org/10.1007/s11356-016-6724-z
  27. Tissari, J., Hytonen, K., Lyyranen, J., and Jokiniemi, J. (2007). A novel field measurement method for determining fine particle and gas emissions from residential wood combustion. Atmospheric Environment, 41, 8330-8344. https://doi.org/10.1016/j.atmosenv.2007.06.018
  28. U.S. Environmental Protection Agency. Conditional Test Method 039. Measurement of PM 2.5 and PM 10 Emissions by dilution sampling, Office of Air Emission Measurement Center; Research Triangle Park, NC, 2004; available at: https://www.epa.gov/emc/emc-conditional-test-methods (accessed 2017)
  29. Youn, J.-S., Han, S., Jung, Y.-W., and Jeon, K.-J. (2017). Comparison of measurement methods and size fraction of fine particles(PM10, PM2.5) from stationary emission source using Korean standard and ISO: Coal power plant and refinery, Journal of Korean Society for Atmospheric Environment, 33(4), 342-350. https://doi.org/10.5572/KOSAE.2017.33.4.342
  30. Woo, C. G., Hong, K.-J., Kim, H.-J., Kim, Y.-J., Han, B., An, J., Kang, S. J., and Chun, S.-N. (2017). Development and performance evaluation of the porous tube dilutor for real-time measurements of fine particles from high humidity environments, Particle and Aerosol Research, 13, 105-110.