DOI QR코드

DOI QR Code

예비설계 단계 우주발사체의 공급/추진계 모델을 이용한 포고 불안정성 예측

Prediction of Preliminary Pogo Instability on a Space Launch Vehicle

  • Lee, SangGu (Department of Mechanical and Aerospace Engineering, Seoul National University) ;
  • Sim, JiSoo (Department of Mechanical and Aerospace Engineering, Seoul National University) ;
  • Shin, SangJoon (Department of Mechanical and Aerospace Engineering, Seoul National University) ;
  • Seo, Yongjun (Department of Mechanical and Aerospace Engineering, Seoul National University) ;
  • Ann, Sungjun (Department of Mechanical and Aerospace Engineering, Seoul National University) ;
  • Song, Huiseong (Department of Mechanical and Aerospace Engineering, Seoul National University) ;
  • Kim, Youdan (Department of Mechanical and Aerospace Engineering, Seoul National University)
  • 투고 : 2017.01.17
  • 심사 : 2017.08.02
  • 발행 : 2017.12.01

초록

액체추진제를 사용하는 우주 발사체의 추진제 공급 과정에서 발생할 수 있는 축방향 동적 불안정성현상을 포고라 한다. 일반적으로 포고는 발사체의 동체와 공급/추진계의 공진에 의하여 발생하고, 동체구조 및 추진 시스템이 닫힌계를 이루게 되어 응답의 진폭이 증가하였다가 감소하는 현상을 보인다. 본 논문에서는 우주왕복선을 예시로 일반적인 발사체의 체계적인 포고 해석이 가능한 수학적 모델을 개발하였다. 정식화된 수식은 발사체 공급/추진계를 2차 선형 미분 방정식 형태로 구성하고, 포고해석에 중요한 세 변수인 압력, 중량변위, 일반화된 변위를 고유치해석을 통해 도출한다. 본 논문의 정식화를 통해 발사체 포고 시스템의 수학적 모델링 기법을 획득할 수 있고, 임의의 발사체에 대하여 체계적인 포고 안정성 해석이 가능할 것으로 예측된다.

The longitudinal dynamic instability which can occur in the fueling process of a space launch vehicle is called pogo. It is caused by coupling between the fuselage and propulsion system and they would be formed as a closed-loop system. so that the amplitude of the response may increase or decrease. In this paper, a mathematical model which is applicable to the systematic pogo analysis of a general launch vehicle is developed for an example of space shuttle. The formulations are composed of the linearized second-order differential equation for the propulsion system, and of the pressure, weight displacement, and generalized displacement. Those are important parameters for pogo analysis, are derived through eigenvalue analysis. By the formulation suggested in this paper, it is expected that mathematical modeling method of the pogo system can be obtained and systematic pogo stability analysis for any launch vehicle will be enabled.

키워드

참고문헌

  1. Lehtinen, B. and Lorenzo, C.F., "Space shuttle Active-pogo Suppressor Control Design Using Linear Quadratic Regulator Techniques," Technical Report, National Aeronautics and Space Administration, Scientific and Technical Information Office, NASA-TP-1217, Jan. 1979.
  2. Lock, M.H. and Rubin, S., "Passive Suppression of Pogo on the Space Shuttle," NASA CR-132452, 1974.
  3. Lock, M.H. and Rubin, S., "Active Suppression of Pogo on the Space Shuttle," NASA CR-134749, 1974.
  4. Rubin, S., Wagner, R.G. and Payne, J.G., "Pogo Suppression on Space Shuttle Early Studies," NASA CR-2210, 1973.
  5. Bohdan, W.O. and Sheldon, R., "Advanced Pogo Stability Analysis for Liquid Rockets," Journal of Spacecraft and Rockets, Vol. 30, No. 3, pp. 360-373, 1993. https://doi.org/10.2514/3.25524
  6. Sim, J.S., Lee, S.G., Shin, S.J., Seo, Y.J., Ann, S.J., Song, H.S. and Kim, Y.D., "Stability analysis and Composition of System for Pogo Prediction of Space Launch Vehicle in Preliminary Design," 47th KSPE Fall Conference, Gangwon-do, Korea, pp. 896-900, Dec. 2016.
  7. Jang, E.Y., Park, H.H., Kim, S.K. and Kim, Y., "A Study on the Flow Control for Stable Combustion of Liquid Rocket," Journal of the Korean Society of Propulsion Engineers, Vol. 4, No. 2, pp. 6-11, 2000.