DOI QR코드

DOI QR Code

Development of a High-Resolution Multi-Locus Microsatellite Typing Method for Colletotrichum gloeosporioides

  • Mehta, Nikita (National Fungal Culture Collection of India (NFCCI), Biodiversity and Palaeobiology Group, MACS-Agharkar Research Institute) ;
  • Hagen, Ferry (Department of Medical Microbiology and Infectious Diseases, Canisius-Wilhelmina Hospital) ;
  • Aamir, Sadaf (National Fungal Culture Collection of India (NFCCI), Biodiversity and Palaeobiology Group, MACS-Agharkar Research Institute) ;
  • Singh, Sanjay K. (National Fungal Culture Collection of India (NFCCI), Biodiversity and Palaeobiology Group, MACS-Agharkar Research Institute) ;
  • Baghela, Abhishek (National Fungal Culture Collection of India (NFCCI), Biodiversity and Palaeobiology Group, MACS-Agharkar Research Institute)
  • Received : 2017.11.10
  • Accepted : 2017.12.18
  • Published : 2017.12.01

Abstract

Colletotrichum gloeosporioides is an economically important fungal pathogen causing substantial yield losses indifferent host plants. To understand the genetic diversity and molecular epidemiology of this fungus, we have developed a novel, high-resolution multi-locus microsatellite typing (MLMT) method. Bioinformatic analysis of C. gloeosporioides unannotated genome sequence yielded eight potential microsatellite loci, of which five, CG1 $(GT)_n$, CG2 $(GT1)_n$, CG3 $(TC)_n$, CG4 $(CT)_n$, and CG5 $(CT1)_n$ were selected for further study based on their universal amplification potential, reproducibility, and repeat number polymorphism. The selected microsatellites were used to analyze 31 strains of C. gloeosporioides isolated from 20 different host plants from India. All microsatellite loci were found to be polymorphic, and the approximate fragment sizes of microsatellite loci CG1, CG2, CG3, CG4, and CG5 were in ranges of 213-241, 197-227, 231-265, 209-275, and 132-188, respectively. Among the 31 isolates, 55 different genotypes were identified. The Simpson's index of diversity (D) values for the individual locus ranged from 0.79 to 0.92, with the D value of all combined five microsatellite loci being 0.99. Microsatellite data analysis revealed that isolates from Ocimum sanctum, Capsicum annuum (chili pepper), and Mangifera indica (mango) formed distinct clusters, therefore exhibited some level of correlation between certain genotypes and host. The developed MLMT method would be a powerful tool for studying the genetic diversity and any possible genotype-host correlation in C. gloeosporioides.

Keywords

References

  1. O'Connell RJ, Thon MR, Hacquard S, Amyotte SG, Kleemann J, Torres MF, Damm U, Buiate EA, Epstein L, Alkan N, et al. Lifestyle transitions in plant pathogenic Colletotrichum fungi deciphered by genome and transcriptome analyses. Nat Genet 2012;44:1060-5. https://doi.org/10.1038/ng.2372
  2. Prusky D. Pathogen quiescence in postharvest diseases. Annu Rev Phytopathol 1996;34:413-34. https://doi.org/10.1146/annurev.phyto.34.1.413
  3. Dean R, Van Kan JA, Pretorius ZA, Hammond-Kosack KE, Di Pietro A, Spanu PD, Rudd JJ, Dickman M, Kahmann R, Ellis J, et al. The top 10 fungal pathogens in molecular plant pathology. Mol Plant Pathol 2012;13:414-30. https://doi.org/10.1111/j.1364-3703.2011.00783.x
  4. Freeman S, Katan T, Shabi E. Characterization of Colletotrichum gloeosporioides isolates from avocado and almond fruits with molecular and pathogenicity tests. Appl Environ Microbiol 1996;62:1014-20.
  5. Gautam AK. The genera Colletotrichum: an incitant of numerous new plant diseases in India. J New Biol Rep 2014;3:9-21.
  6. Freeman S, Minz D, Jurkevitch E, Maymon M, Shabi E. Molecular analyses of Colletotrichum species from almond and other fruits. Phytopathology 2000;90:608-14. https://doi.org/10.1094/PHYTO.2000.90.6.608
  7. Rampersad SN. Genetic structure of Colletotrichum gloeosporioides sensu lato isolates infecting papaya inferred by multilocus ISSR markers. Phytopathology 2013;103:182-9. https://doi.org/10.1094/PHYTO-07-12-0160-R
  8. Ramdeen S, Rampersad SN. Intraspecific differentiation of Colletotrichum gloeosporioides sensu lato based on in silico multilocus PCR-RFLP fingerprinting. Mol Biotechnol 2013; 53:170-81. https://doi.org/10.1007/s12033-012-9509-8
  9. Talhinhas P, Sreenivasaprasad S, Neves-Martins J, Oliveira H. Molecular and phenotypic analyses reveal association of diverse Colletotrichum acutatum groups and a low level of C. gloeosporioides with olive anthracnose. Appl Environ Microbiol 2005;71:2987-98. https://doi.org/10.1128/AEM.71.6.2987-2998.2005
  10. Denoyes-Rothan B, Guérin G, Délye C, Smith B, Minz D, Maymon M, Freeman S. Genetic diversity and pathogenic variability among isolates of Colletotrichum species from strawberry. Phytopathology 2003;93:219-28. https://doi.org/10.1094/PHYTO.2003.93.2.219
  11. Alahakoon PW, Brown AE, Sreenivasaprasad S. Cross-infection potential of genetic groups of Colletotrichum gloeosporioides on tropical fruits. Physiol Mol Plant Pathol 1994;44:93-103. https://doi.org/10.1016/S0885-5765(05)80104-3
  12. Ureña-Padilla AR, Mackenzie SJ, Bowen BW, Legard DE. Etiology and population genetics of Colletotrichum spp. causing crown and fruit rot of strawberry. Phytopathology 2002;92: 1245-52. https://doi.org/10.1094/PHYTO.2002.92.11.1245
  13. Weeds PL, Chakraborty S, Fernandes CD, d'A Charchar MJ, Ramesh CR, Kexian Y, Kelemu S. Genetic diversity in Colletotrichum gloeosporioides from Stylosanthes spp. at centers of origin and utilization. Phytopathology 2003;93:176-85. https://doi.org/10.1094/PHYTO.2003.93.2.176
  14. Nova MX, Borges LR, de Sousa AC, Brasileiro BT, Lima EA, da Costa AF, de Oliveira NT. Pathogenicity for onion and genetic diversity of isolates of the pathogenic fungus Colletotrichum gloeosporioides (Phyllachoraceae) from the State of Pernambuco, Brazil. Genet Mol Res 2011;10:311-20. https://doi.org/10.4238/vol10-1gmr1014
  15. Gil-Lamaignere C, Roilides E, Hacker J, Muller FM. Molecular typing for fungi: a critical review of the possibilities and limitations of currently and future methods. Clin Microbiol Infect 2003;9:172-85. https://doi.org/10.1046/j.1469-0691.2003.00649.x
  16. Tautz D, Renz M. Simple sequences are ubiquitous repetitive components of eukaryotic genomes. Nucleic Acids Res 1984; 12:4127-38. https://doi.org/10.1093/nar/12.10.4127
  17. Toth G, Gaspari Z, Jurka J. Microsatellites in different eukaryotic genomes: survey and analysis. Genome Res 2000;10:967-81. https://doi.org/10.1101/gr.10.7.967
  18. Klaassen CH. MLST versus microsatellites for typing Aspergillus fumigatus isolates. Med Mycol 2009;47 Suppl 1:S27-33. https://doi.org/10.1080/13693780802382244
  19. de Valk HA, Meis JF, Bretagne S, Costa JM, Lasker BA, Balajee SA, Pasqualotto AC, Anderson MJ, Alcázar-Fuoli L, Mellado E, et al. Interlaboratory reproducibility of a microsatellite-based typing assay for Aspergillus fumigatus through the use of allelic ladders: proof of concept. Clin Microbiol Infect 2009; 15:180-7. https://doi.org/10.1111/j.1469-0691.2008.02656.x
  20. White TJ, Bruns S, Lee S, Taylor J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ, editors. PCR protocols: a guide to methods and applications. San Diego (CA): Academic Press; 1990. p. 315-22.
  21. Benson G. Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res 1999;27:573-80. https://doi.org/10.1093/nar/27.2.573
  22. Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, Rozen SG. Primer3: new capabilities and interfaces. Nucleic Acids Res 2012;40:e115. https://doi.org/10.1093/nar/gks596
  23. Aamir S, Sutar S, Singh SK, Baghela A. A rapid and efficient method of fungal genomic DNA extraction, suitable for PCR based molecular methods. Plant Pathol Quar 2015;5:74-81. https://doi.org/10.5943/ppq/5/2/6
  24. Gan P, Ikeda K, Irieda H, Narusaka M, O'Connell RJ, Narusaka Y, Takano Y, Kubo Y, Shirasu K. Comparative genomic and transcriptomic analyses reveal the hemibiotrophic stage shift of Colletotrichum fungi. New Phytol 2013;197: 1236-49. https://doi.org/10.1111/nph.12085
  25. Sampaio P, Gusmao L, Correia A, Alves C, Rodrigues AG, PCR for Candida albicans strain typing reveals microevolutionary changes. J Clin Microbiol 2005;43:3869-76. https://doi.org/10.1128/JCM.43.8.3869-3876.2005
  26. De Valk HA, Meis JF, Curfs IM, Muehlethaler K, Mouton JW, Klaassen CH. Use of a novel panel of nine short tandem repeats for exact and high-resolution fingerprinting of Aspergillus fumigatus isolates. J Clin Microbiol 2005;43:4112-20. https://doi.org/10.1128/JCM.43.8.4112-4120.2005
  27. Rudramurthy SM, de Valk HA, Chakrabarti A, Meis JF, Klaassen CH. High resolution genotyping of clinical Aspergillus flavus isolates from India using microsatellites. PLoS One 2011;6:e16086. https://doi.org/10.1371/journal.pone.0016086
  28. Baghela A, Thungapathra M, Shivaprakash MR, Chakrabarti A. Multilocus microsatellite typing for Rhizopus oryzae. J Med Microbiol 2010;59(Pt 2):1449-55. https://doi.org/10.1099/jmm.0.023002-0
  29. Wu Y, Zhou HJ, Che J, Li WG, Bian FN, Yu SB, Zhang LJ, Lu J. Multilocus microsatellite markers for molecular typing of Candida tropicalis isolates. BMC Microbiol 2014;14:245. https://doi.org/10.1186/s12866-014-0245-z
  30. Banilas G, Sgouros G, Nisiotou A. Development of microsatellite markers for Lachancea thermotolerans typing and population structure of wine-associated isolates. Microbiol Res 2016;193: 1-10. https://doi.org/10.1016/j.micres.2016.08.010
  31. Buddie AG, Martinez-Culebras P, Bridge PD, García MD, Querol A, Cannon PF, Monte E. Molecular characterization of Colletotrichum strains derived from strawberry. Mycol Res 1999;103:385-94. https://doi.org/10.1017/S0953756298007254
  32. González E, Sutton TB, Correll JC. Clarification of the etiology of Glomerella leaf spot and bitter rot of apple caused by Colletotrichum spp. based on morphology and genetic, molecular, and pathogenicity tests. Phytopathology 2006;96: 982-92. https://doi.org/10.1094/PHYTO-96-0982
  33. Gazis R, Rehner S, Chaverri P. Species delimitation in fungal endophyte diversity studies and its implications in ecological and biogeographic inferences. Mol Ecol 2011;20:3001-13. https://doi.org/10.1111/j.1365-294X.2011.05110.x
  34. Lasker BA, Ran Y. Analysis of polymorphic microsatellite markers for typing Penicillium marneffei isolates. J Clin Microbiol 2004;42:1483-90. https://doi.org/10.1128/JCM.42.4.1483-1490.2004
  35. Fisher MC, Aanensen D, De Hoog S, Vanittanakom N.Multilocus microsatellite typing system for Penicillium marneffeireveals spatially structured populations. J Clin Microbiol2004;42:5065-9. https://doi.org/10.1128/JCM.42.11.5065-5069.2004