DOI QR코드

DOI QR Code

단기선 GPS측위 모델을 이용한 관측오차 분석

Analysis of Measurement Errors Using Short-Baseline GPS Positioning Model

  • Hong, Chang-Ki (Dept. of Geoinformatics Engineering, Kyungil University) ;
  • Han, Soohee (Dept. of Geoinformatics Engineering, Kyungil University)
  • 투고 : 2017.11.30
  • 심사 : 2017.12.14
  • 발행 : 2017.12.31

초록

GPS 관측값을 이용하여 측위를 하는 경우 조정계산이 수반되면 이때 관측오차에 대한 정확한 모델링이 필수적이다. 본 연구에서는 GPS 관측타입별 관측오차를 분석하기 위해 MINQUE(Minimum Norm Quadratic Unbiased Estimators) 방법을 사용하였으며 단기선 GPS측위 모델을 기반으로 하였다. C1, P2, L1, L2 관측타입에 대해 각각 단위분산을 계산하였으며 그 결과 관측오차는 각각 22.3cm, 27.6cm, 2.5cm, 2.2cm로 나타났다. 단위분산 계산에는 대용량의 컴퓨터 메모리와 복잡한 계산이 필요하다. 이러한 단점을 극복하기 위해 epoch별로 단위분산을 추정하였으며 결과를 분석함으로써 epoch별 계산방법의 유효성을 검증하였다. 분석 결과, 계산된 결과값에 차이가 있긴 했으나 그 차이가 비교적 작기 때문에 대부분의 GPS 응용분야에서의 활용에는 문제가 없을 것으로 판단된다.

Precise stochastic modeling for GPS measurements is one of key factors in adjustment computations for GPS positioning. To analyze the GPS measurement errors, Minimum Norm Quadratic Unbiased Estimators(MINQUE) approach is used in this study to estimate the variance components for measurement types with short-baseline GPS positioning model. The results showed the magnitudes of measurement errors for C1, P2, L1, L2 are 22.3cm, 27.6cm, 2.5mm, 2.2mm, respectively. To reduce the memory usage and computational burden, variance components are also estimated on epoch-by-epoch basis. The results showed that there exists slight differences between the solutions. However, epoch-by-epoch analysis may also be used for most of GPS applications considering the magnitudes of the differences.

키워드

참고문헌

  1. Amiri-Simkooei, A.R. (2007), Least-squares Variance Component Estimation: Theory and GPS Applications, Ph.D. dissertation, Delft University of Technology, Delft, Netherlands, 202p.
  2. Amiri-Simkooei, A.R., Zangeneh-Nejad, F., and Asgari, J. (2013), Least-squares variance component estimation applied to GPS geometry-based observation model, Journal of Surveying Engineering, Vol. 139, pp. 176-187. https://doi.org/10.1061/(ASCE)SU.1943-5428.0000107
  3. Amiri-Simkooei, A.R., Jazaeri, S., Zangeneh-Nejad, F., and Asgari, J. (2016), Role of stochastic model on GPS integer ambiguity resolution success rate, GPS Solutions, Vol. 20, No. 1, pp. 51-61. https://doi.org/10.1007/s10291-015-0445-5
  4. Dach, R., Lutz, S., Walser, P., and Fridez, P. (2015), Bernese GNSS Software Version 5.2 Manual, Astronomical Institute, University of Bern.
  5. Goad, C.C. and Yang, M.A. (1997), New approach to precision airborne GPS positioning for photogrammetry, Photogrammetric Engineering & Remote Sensing, Vol. 63, No. 9, pp. 1067-1077.
  6. Hofmann-Wellenhof, B., Lichtenegger, H., and Wasle, E. (2008), GNSS Global Navigation Satellite System - GPS, GLONASS, Galileo & more, Springer, Wien New York.
  7. Koch, K.R. (1986), Maximum likelihood estimate of variance components, Bulletin Geodesique, Vol. 60, pp. 329-338. https://doi.org/10.1007/BF02522340
  8. Koch, K.R. (1988), Parameter Estimation and Hypothesis Testing Linear Models, Springer-Verlag, Berlin.
  9. Leick, A. (2004), GPS Satellite Surveying, 3rd edition, John Wiley, New York.
  10. Rao, C.R. (1971), Estimation of variance and covariance components - MINQUE theory, Journal of Multivariate Analysis, Vol. 1, pp. 257-275. https://doi.org/10.1016/0047-259X(71)90001-7
  11. Rao, C.R. (1973), Linear Statistical Inference and its Applications, John Wiley & Sons, Inc., New York, London, Sydeny, Toronto.
  12. Schaffrin, B. (2002), Adjustment Computations, Lecture Notes (GS651), Dept. of Geodetic Science, The Ohio State University, Columbus, Ohio, USA.
  13. Teunissen, P.J.G. (1994), A new method for fast carrier phase ambiguity estimation, Proceedings of IEEE PLANS'94, Las Vegas, NV, April 11-15.
  14. Teunissen, P.J.G. and Amiri-Simkooei, A.R. (2008), Leastsquares variance component estimation, Journal of Geodesy, Vol. 82, No. 2, pp. 65-82. https://doi.org/10.1007/s00190-007-0157-x
  15. Tiberius, C. and Kenselaar, F. (2003), Variance component estimation and precise GPS positioning: Case study, Journal of Surveying Engineering, Vol. 129, No. 1, pp. 11-18. https://doi.org/10.1061/(ASCE)0733-9453(2003)129:1(11)
  16. Xu, P, Shen, Y., Fukuda, Y., and Liu, Y. (2006), Variance component estimation in linear inverse ill-posed models, Journal of Geodesy, Vol. 80, No. 2, pp. 69-81. https://doi.org/10.1007/s00190-006-0032-1