DOI QR코드

DOI QR Code

Recent research trend for silk hydrogel

실크 하이드로겔 연구 동향

  • Ki, Chang Seok (Department of Biosystems & Biomaterials Science and Engineering, Seoul National University) ;
  • Kim, Hyung Hwan (Department of Biosystems & Biomaterials Science and Engineering, Seoul National University) ;
  • Park, Young Hwan (Department of Biosystems & Biomaterials Science and Engineering, Seoul National University)
  • 기창석 (서울대학교 바이오시스템소재학부) ;
  • 김형환 (서울대학교 바이오시스템소재학부) ;
  • 박영환 (서울대학교 바이오시스템소재학부)
  • Published : 2016.12.01

Abstract

Both mechanical property and biocompatibility of silk protein has been highlighted for decades and lots of studies are trying to use it for a wide variety of applications. Recently, silk-based hydrogel has received great attention in biomedical field such as drug delivery and tissue engineering since silk protein presents a unique hydrogel forming mechanism as well as cyto-compatibility. Silk hydrogels are formed via tremendous physical and chemical techniques and their biomedical applications are extensively explored. In this review, various types and fabrication methods of silk hydrogels are presented and also the recent research trend of silk hydrogel-based applications is summarized.

Keywords

References

  1. Ak F, Oztoprak Z, Karakutuk I, Okay O (2013), Biomacromolecules, 14, 719. https://doi.org/10.1021/bm3018033
  2. Applegate MB, Partlow BP, Coburn J, Marelli B, Pirie C, Pineda R, Kaplan DL, Omenetto FG (2016), Advanced Materials.
  3. Ayub ZH, Arai M, Hirabayashi K (1993), Bioscience, biotechnology, and biochemistry, 57, 1910. https://doi.org/10.1271/bbb.57.1910
  4. Bragg JC, Kweon H, Jo Y, Lee KG, Lin CC (2016), Journal of Applied Polymer Science, 133.
  5. Calabrese R, Kaplan DL (2012), Biomaterials, 33, 7375. https://doi.org/10.1016/j.biomaterials.2012.06.043
  6. Das S, Pati F, Choi YJ, Rijal G, Shim JH, Kim SW, Ray AR, Cho DW, Ghosh S (2015), Acta biomaterialia, 11, 233. https://doi.org/10.1016/j.actbio.2014.09.023
  7. Diab T, Pritchard EM, Uhrig BA, Boerckel JD, Kaplan DL, Guldberg RE (2012), Journal of the mechanical behavior of biomedical materials, 11, 123. https://doi.org/10.1016/j.jmbbm.2011.11.007
  8. Elliott WH, Bonani W, Maniglio D, Motta A, Tan W, Migliaresi C (2015), ACS applied materials & interfaces, 7, 12099. https://doi.org/10.1021/acsami.5b02308
  9. Floren ML, Spilimbergo S, Motta A, Migliaresi C (2012), Biomacromolecules, 13, 2060. https://doi.org/10.1021/bm300450a
  10. Gil ES and Hudson SM (2007), Biomacromolecules, 8, 258. https://doi.org/10.1021/bm060543m
  11. Gong Z, Yang Y, Ren Q, Chen X, Shao Z (2012), Soft matter, 8, 2875. https://doi.org/10.1039/c2sm06984a
  12. Guziewicz N, Best A, Perez-Ramirez B, Kaplan DL (2011), Biomaterials, 32, 2642. https://doi.org/10.1016/j.biomaterials.2010.12.023
  13. Hanawa T, Watanabe A, Tsuchiya T, Ikoma R, Hidaka M, Sugihara M (1995), Chemical and pharmaceutical Bulletin, 43, 284. https://doi.org/10.1248/cpb.43.284
  14. Hu X, Lu Q, Sun L, Cebe P, Wang X, Zhang X, Kaplan DL (2010), Biomacromolecules, 11, 3178. https://doi.org/10.1021/bm1010504
  15. Jin HJ, Kaplan DL (2003), Nature, 424, 1057. https://doi.org/10.1038/nature01809
  16. Jo YY, Bragg JC, Kweon H (2016), International Journal of Industrial Entomology, 32, 35. https://doi.org/10.7852/ijie.2016.32.1.35
  17. Kang GD, Lee KH, Ki CS, Park YH (2004), Fibers and Polymers, 5, 234. https://doi.org/10.1007/BF02903006
  18. Kang GD, Nahm JH, Park JS, Moon JY, Cho CS, Yeo JH (2000), Macromolecular rapid communications, 21, 788. https://doi.org/10.1002/1521-3927(20000701)21:11<788::AID-MARC788>3.0.CO;2-X
  19. Ki CS, Park YH, Jin HJ (2009), Macromolecular research, 17, 935. https://doi.org/10.1007/BF03218639
  20. Kim HH, Park JB, Kang MJ, Park YH (2014), International journal of biological macromolecules, 70, 516. https://doi.org/10.1016/j.ijbiomac.2014.06.052
  21. Kim UJ, Park J, Li C, Jin HJ, Valluzzi R, Kaplan DL (2004), Biomacromolecules, 5, 786. https://doi.org/10.1021/bm0345460
  22. Kojic N, Pritchard EM, Tao H, Brenckle MA, Mondia JP, Panilaitis B, Omenetto F, Kaplan DL (2012), Advanced functional materials, 22, 3793. https://doi.org/10.1002/adfm.201200382
  23. Kundu B, Rajkhowa R, Kundu SC, Wang X (2013), Advanced drug delivery reviews, 65, 457. https://doi.org/10.1016/j.addr.2012.09.043
  24. Kundu B, Kurland NE, Bano S, Patra C, Engel FB, Yadavalli VK, Kundu SC (2014), Progress in Polymer Science, 39, 251. https://doi.org/10.1016/j.progpolymsci.2013.09.002
  25. Kundu J, Poole-Warren LA, Martens P, Kundu SC (2012), Acta biomaterialia, 8, 1720. https://doi.org/10.1016/j.actbio.2012.01.004
  26. Lee M, Seo S, Kim JC (2012), Clinical and experimental dermatology, 37, 762. https://doi.org/10.1111/j.1365-2230.2011.04331.x
  27. Leisk GG, Lo TJ, Yucel T, Lu Q, Kaplan DL (2010), Advanced materials, 22, 711. https://doi.org/10.1002/adma.200902643
  28. Li Z, Zheng Z, Yang Y, Fang G, Yao J, Shao Z, Chen X (2016), ACS Sustainable Chemistry & Engineering, 4, 1500. https://doi.org/10.1021/acssuschemeng.5b01463
  29. Li G, Kong Y, Zhao Y, Zhang L, Yang Y (2015), Journal of Biomaterials Science, Polymer Edition, 26, 899. https://doi.org/10.1080/09205063.2015.1066109
  30. Lovett ML, Wang X, Yucel T, York L, Keirstead M, Haggerty L, Kaplan DL (2015), European Journal of Pharmaceutics and Biopharmaceutics, 95, 271. https://doi.org/10.1016/j.ejpb.2014.12.029
  31. Luo K, Yang Y, Shao Z (2015), Advanced Functional Materials.
  32. Lv Q, Hu K, Feng Q, Cui F (2008), Journal of Biomedical Materials Research Part A, 84, 198.
  33. Mallepally RR, Marin MA, McHugh MA (2014), Acta biomaterialia, 10, 4419. https://doi.org/10.1016/j.actbio.2014.06.007
  34. Mandal BB, Kapoor S, Kundu SC (2009), Biomaterials, 30, 2826. https://doi.org/10.1016/j.biomaterials.2009.01.040
  35. Mathur AB, Gupta V (2010), Nanomedicine, 5, 807. https://doi.org/10.2217/nnm.10.51
  36. Matsumoto A, Chen J, Collette AL, Kim UJ, Altman GH, Cebe P, Kaplan DL (2006), The Journal of Physical Chemistry B, 110, 21630. https://doi.org/10.1021/jp056350v
  37. Min S, Nakamura T, Teramoto A, Abe K (1998), 織維学会誌, 54, 85.
  38. Ming J, Pan F, Zuo B (2015), Journal of Sol-Gel Science and Technology, 74, 774. https://doi.org/10.1007/s10971-015-3662-z
  39. Mitropoulos AN, Marelli B, Ghezzi CE, Applegate MB, Partlow BP, Kaplan DL, Omenetto FG (2015), ACS Biomaterials Science & Engineering, 1, 964. https://doi.org/10.1021/acsbiomaterials.5b00215
  40. Moraes MA, Mahl A, Regina Ferreira Silva CM, Beppu MM (2015), Journal of Applied Polymer Science, 132.
  41. Murphy AR, Kaplan DL (2009), Journal of materials chemistry, 19, 6443. https://doi.org/10.1039/b905802h
  42. Parkes M, Myant C, Dini D, Cann P (2015), Tribology International, 89, 9. https://doi.org/10.1016/j.triboint.2014.11.024
  43. Partlow BP, Hanna CW, Rnjak?Kovacina J, Moreau JE, Applegate MB, Burke KA, Marelli B, Mitropoulos AN, Omenetto FG, Kaplan DL (2014), Advanced functional materials, 24, 4615. https://doi.org/10.1002/adfm.201400526
  44. Pritchard EM, Kaplan DL (2011), Expert opinion on drug delivery, 8, 797 (2011). https://doi.org/10.1517/17425247.2011.568936
  45. Rathore O, Sogah DY (2001), Macromolecules, 34, 1477. https://doi.org/10.1021/ma001553x
  46. Ribeiro M, Moraes MA, Beppu MM, Garcia MP, Fernandes MH, Monteiro FJ, Ferraz MP (2015), European Polymer Journal, 67, 66. https://doi.org/10.1016/j.eurpolymj.2015.03.056
  47. Ryu S, Kim HH, Park YH, Lin CC, Um IC, Ki CS (2016), Journal of Materials Chemistry B.
  48. Seib FP, Pritchard EM, Kaplan DL (2013), Advanced functional materials, 23, 58. https://doi.org/10.1002/adfm.201201238
  49. Silva SS, Santos TC, Cerqueira MT, Marques AP, Reys LL, Silva TH, Caridade SG, Mano JF, Reis RL (2012), Green Chemistry, 14, 1463. https://doi.org/10.1039/c2gc16535j
  50. Srisawasdi T, Petcharoen K, Sirivat A, Jamieson AM (2015), Materials Science and Engineering: C, 56, 1. https://doi.org/10.1016/j.msec.2015.06.005
  51. Sun W, Incitti T, Migliaresi C, Quattrone A, Casarosa S, Motta A (2015), Journal of tissue engineering and regenerative medicine.
  52. Wang X, Kluge JA, Leisk GG, Kaplan DL (2008), Biomaterials, 29, 1054. https://doi.org/10.1016/j.biomaterials.2007.11.003
  53. Wang X, Partlow B, Liu J, Zheng Z, Su B, Wang Y, Kaplan DL (2015), Acta biomaterialia, 12, 51. https://doi.org/10.1016/j.actbio.2014.10.027
  54. Wenk E, Merkle HP, Meinel L (2011), Journal of Controlled Release, 150, 128. https://doi.org/10.1016/j.jconrel.2010.11.007
  55. Wu X, Hou J, Li M, Wang J, Kaplan DL, Lu S (2012), Acta biomaterialia, 8, 2185. https://doi.org/10.1016/j.actbio.2012.03.007
  56. Xiao W, He J, Nichol JW, Wang L, Hutson CB, Wang B, Du Y, Fan H, Khademhosseini A (2011), Acta biomaterialia, 7, 2384. https://doi.org/10.1016/j.actbio.2011.01.016
  57. Y. Jin Y, Kundu B, Cai Y, Kundu SC, Yao J (2015), Colloids and Surfaces B: Biointerfaces, 134, 339. https://doi.org/10.1016/j.colsurfb.2015.07.015
  58. Yucel T, Cebe P, Kaplan DL (2009), Biophysical journal, 97, 2044. https://doi.org/10.1016/j.bpj.2009.07.028
  59. Zhang F, Li J, Zhu T, Zhang S, Kundu SC, Lu S (2015), Journal of Biomaterials Science, Polymer Edition, 26, 780. https://doi.org/10.1080/09205063.2015.1058576
  60. Zhang W, Wang X, Wang S, Zhao J, Xu L, Zhu C, Zeng D, Chen J, Zhang Z, Kaplan DL (2011), Biomaterials, 32, 9415. https://doi.org/10.1016/j.biomaterials.2011.08.047
  61. Zhong T, Jiang Z, Wang P, Bie S, Zhang F, Zuo B (2015), International journal of pharmaceutics, 494, 264. https://doi.org/10.1016/j.ijpharm.2015.08.035
  62. Zhong T, Xie Z, Deng C, Chen M, Gao Y, Zuo B (2013), Journal of Applied Polymer Science, 127, 2019. https://doi.org/10.1002/app.37580
  63. Zhu LJ, ARAI M, HIRABAYASHI K (1996), The Journal of Sericultural Science of Japan, 65, 270.
  64. Ziv K, Nuhn H, Ben-Haim Y, Sasportas LS, Kempen PJ, Niedringhaus TP, Hrynyk M, Sinclair R, Barron AE, Gambhir SS (2014), Biomaterials, 35, 3736. https://doi.org/10.1016/j.biomaterials.2014.01.029