DOI QR코드

DOI QR Code

Attitude Determination for Gyroless Spacecraft Using Reaction Wheels

반작용휠을 이용한 자이로 미탑재 위성의 자세결정 기법

  • Received : 2016.06.08
  • Accepted : 2016.09.08
  • Published : 2016.10.01

Abstract

This paper deals with a new technique utilizing the angular speed of the reaction wheels to determine attitudes and angular rates for gyroless satellites. The suggested algorithm in this study is designed to determine the precise attitude and angular rates under actual space environments by the support of the angular speeds of reaction wheels based on the extended Kalman filter. Furthermore, the proposed approach is also designed to estimate not only the attitude and angular rates of spacecraft but the external disturbances. The numerical simulation was conducted for gyloless spacecraft installed with four reaction wheels of the pyramid-type configuration. The performance of the proposed algorithm is verified by using numerical simulations.

본 연구에서는 자이로 미탑재 위성의 자세와 각속도를 결정하기 위해 반작용휠 각속도 정보를 활용하는 기법에 대하여 다룬다. 제안하는 알고리즘은 실제 궤도환경 조건에서도 위성의 자세와 각속도를 최적 추정 및 결정할 수 있도록 반작용횔의 각속도를 활용하여 확장칼만필터를 기반으로 설계하였다. 더욱이, 고려한 조건 중 하나인 외부교란의 추정도 같이 수행할 수 있도록 구성하였다. 알고리즘의 성능검증을 위해 수치 시뮬레이션을 수행하였으며, 반작용휠의 장착형태는 일반적으로 많이 사용되는 피라미드 형상을 가정하였다. 시뮬레이션 결과로부터 알고리즘의 성능과 타당성을 검증하였다.

Keywords

References

  1. Oshman, Y., and Markley, F. L. "Sequential gyroless attitude and attitude-rate estimation from vector observations,". Acta Astronautica, Vol. 46, No. 7, 2000, pp. 449-463. https://doi.org/10.1016/S0094-5765(99)00184-8
  2. Tsao, T. C., and Liu, D., "Gyroless Stellar Acquisition Algorithm for Spacecraft Closed-Loop Control and Its Accuracy," AIAA Guidance, Navigation, and Control Conference, Chicago, 2009,
  3. Agrawal, B. N., and Palermo, W. J., "Angular Rate Estimation for Gyroless Satellite Attitude Control," AIAA Guidance, Navigation, and Control Conference and Exhibit, Aug. 2002. Monterey, California, AIAA 2002-4463.
  4. Singla, P., Crassidis, J. L., and Junkins, J. L., "Spacecraft Angular Rate Estimation Algorithms for Star Tracker-Based Attitude Determination," Advances in the Astronautical Sciences, Vol. 114, 2003, pp.1303-1316.
  5. Serrano, J. B., Mora. E. J., Sarti, F., Marcille, H., and Cope, P., "Spacecraft Attitude Rate Measurement Systems without Gyros," Spacecraft Guidance, Navigation and Control Systems, Vol. 381, 1997, p.577
  6. Harman, R., Thienel, J., and Oshman, Y., "Gyroless Attitude and Rate Estimation Algorithms for The Fuse Spacecraft," Flight Mechanics Symposium, NASA Goddard Space Flight Center, Oct. 2003.
  7. Shou, H. N., "Discoid and Asymmetrical Gyroless Micro-Satellite Off-Modulation Attitude Control with Kalman Filter," Marine Science and Technology journal, Vol. 22, No. 6 2014, pp.705-715.
  8. Oshman, Y., and Markley, F. L., "Sequential Gyroless Attitude and Attitude-Rate Estimation from Vector Observations," Acta Astronautica, Vol. 46, No.7, 2000, pp.449-463. https://doi.org/10.1016/S0094-5765(99)00184-8
  9. Ahn, H. S., and Lee, S. H., "Gyroless Attitude Estimation of Sun-Pointing Satellites Using Magnetometers," IEEE Geoscience and Remote Sensing Letters, Vol. 2, No. 1, 2005. pp.8-12. https://doi.org/10.1109/LGRS.2004.840608
  10. Crassidis, J. L., and Junkins, J. L., Optimal Estimation of Dynamic Systems, CRC Press, 2004, pp.451-460.
  11. Leeghim, H., "Optimal Steering Laws for Control Moment Gyros" Korea Advanced Institute of Science and Technology, Doctoral Dissertation, Feb. 2007.