DOI QR코드

DOI QR Code

붕규산유리 및 비정질 붕소강 섬유를 혼입한 콘크리트의 역학적 성능 및 중성자 차폐성능 평가

Mechanical Properties and Neutron Shielding Rate of Concrete with Borosilicate-Glasses and Amorphous Boron Steel Fiber

  • 이준철 (경북대학교 대경권국토교통기술지역거점센터)
  • Lee, Jun-Cheol (Daekyung Regional Research and Development Center for Infrastructure Technology, Kyungpook University)
  • 투고 : 2016.08.23
  • 심사 : 2016.09.12
  • 발행 : 2016.09.30

초록

본 연구에서는 붕규산 유리와 비정질 붕소강 섬유를 혼입한 콘크리트의 역학적 성능 및 중성자 차폐성능을 평가하였다. 잔골재를 붕규산 유리로 치환한 콘크리트와 비정질 붕소강 섬유를 보강한 콘크리트를 제조하여 압축강도, 정탄성계수, 압축인성, 휨강도, 휨인성, 중성자 차폐성능을 평가하였다. 실험결과, Plain 콘크리트와 대비하여 붕규산 유리를 혼입한 콘크리트의 경우 압축강도 및 휨강도는 저하되었으나, 중성자 차폐성능은 향상되는 것으로 나타났다. 비정질 붕소강 섬유를 혼입한 콘크리트의 경우 Plain 콘크리트와 대비하여 압축인성 및 휨인성이 증진되었으며 중성자 차폐성능도 향상되는 것으로 나타났다.

In this study, the mechanical properties and the neutron shielding rate of concrete with the borosilicate glass and the amorphous boron steel fiber were investigated. The measures of this investigation includes air contents, slump loss, compressive strength, static modulus of elasticity, compressive toughness, flexural strength, flexure toughness and neutron shielding rate. As a result, the neutron shielding rate of the concrete with borosilicate glasses increased even though the compressive strength and flexural strength decreased in comparison with that of plain concrete. Also, the mechanical toughness and the neutron shielding rate of the concrete with amorphous boron steel fiber increased in comparison with that of plain concrete.

키워드

참고문헌

  1. Abdullah, Y., Ariffin, F.N., Hamid, R., Yusof, M.R., Zali, N.M., Ahmad MHARM, Mohamed, A.A. (2014). Preliminary study of neutron absorption by concrete with boron carbide addition, In AIP Conference Proceedings, 1584(1), 101-104.
  2. Abdullah, Y., Yusof, M.R., Muhamad, A., Samsu, Z., Abdullah, NE. (2010). Cement-boron carbide concrete as radiation shielding material, Journal of Nuclear and Related Technologies, 7(2), 74-79.
  3. JSCE-SF5. (1984). Method of Test for Compressive Strength and Compressive Toughness of Steel Fibre-Reinforced Concrete, Concrete library of JSCE, 3, 63-66.
  4. Kaplan MF. (1989). Concrete Radiation Shielding. Longman Scientific & Technical.
  5. Kharita, M.H., Yousef, S., AlNassar, M. (2011). Review on the addition of boron compounds to radiation shielding concrete, Progress in Nuclear Energy, 53(2), 207-211. https://doi.org/10.1016/j.pnucene.2010.09.012
  6. Nataraja, M.C., Dhang, N., Gupta, A.P. (1999). Stress-strain curves for steel fiber reinforced concrete under compression, Cement and Concrete Composite, 21(5-6), 383-390. https://doi.org/10.1016/S0958-9465(99)00021-9
  7. Neville, A.M. (2000). Properties of Concrete, 4th Ed., Longham. ELBS.
  8. Poon, C.S., Shui, Z.H., Lam, L. (2004). Compressive behavior of fiber reinforced high performance concrete subjected to elevated temperature, Cement and Concrete Research, 34(12), 2215-2222. https://doi.org/10.1016/j.cemconres.2004.02.011
  9. Singh, K.J., Singh, N., Kaundal, R.S., Singh, K. (2008). Gammaray shielding and structural properties of PbO-$SiO_2$ glasses, Nuclear Instruments and Methods in Physics Research B, 266(6), 944-948. https://doi.org/10.1016/j.nimb.2008.02.004