DOI QR코드

DOI QR Code

시간의존성 염화물 확산계수를 고려한 확산 영향인자가 결정론적 및 확률론적 내구수명에 미치는 영향분석

Analysis for Effect of Diffusion Parameter with Time-dependent Diffusion Coefficient on Service Life Considering Deterministic and Probabilistic Method

  • 권성준 (한남대학교 건설시스템공학과)
  • 투고 : 2016.08.22
  • 심사 : 2016.09.13
  • 발행 : 2016.09.30

초록

염해에 노출된 콘크리트 구조물의 내구수명 평가는 크게 결정론적 방법과 확률론적 방법으로 분류할 수 있으며, 다양한 설계인자에 따라 내구수명은 크게 변화한다. 본 연구에서는 시간의존성 확산계수 및 내부영향인자(기본확산계수, 임계염화물량, 시간지수)를 고려하여 변화하는 내구적 파괴확률과 이에 따른 내구수명을 도출하였다. 임계 염화물량이 133.3% 증가할 때, 내구수명은 결정론적 방법에서 134.0~145.4%의 증가비를 나타내었으며, 확률론적 방법에서는 149.2%~152.5% 증가비를 나타내었다. 시간지수가 200% 증가할 경우, 내구수명의 증가비율은 결정론적 방법에서 323.8%, 확률론적 방법에서 346.0%로 증가하였다. 시간의존성 확산계수를 사용하여 과다설계를 방지할 수 있는 합리적인 확률론적 내구설계를 수행할 수 있었으며, 혼화재료를 사용하여 시간지수를 증가시키는 것이 매우 효과적인 내구수명 연장방안임을 알 수 있었다.

The service life evaluation in RC(Reinforced Concrete) structure exposed to chloride attack can be classified into deterministic and probabilistic method, and it significantly varies with design parameters. The present work derives PDF (Probability of Durability Failure) and the related service life considering time-dependent diffusion coefficient and internal parameters such as reference diffusion coefficient, critical chloride content, and time-exponent. When critical chloride content increases to 133.3%, the changing ratios of service life are 134.0~145.4% for deterministic method and 149.2%~152.5% for probabilistic method, respectively. In the case of increasing time-exponent to 200%, they increase to 323.8% for deterministic method and 346.0% for probabilistic method. Through adopting time-diffusion coefficient for probabilistic method, reasonable service life evaluation can be achieved, and it is also verified that increasing time-exponent through mineral admixture is very effective to extension of service life in RC structure.

키워드

참고문헌

  1. Alonso, C., Castellote, M., Andrade, C. (2002). Chloride Threshold Dependence of Pitting Potential of Reinforcements, Electrochemica Acta, 47(21), 3469-3481. https://doi.org/10.1016/S0013-4686(02)00283-9
  2. Broomfield, J.P. (1997). Corrosion of Steel in Concrete: Understanding, Investigation and Repair, E&FN, London, 1-15.
  3. CEB. (1997). New Approach to Durability Design, CEB Bulletin 238, 29-43.
  4. Chung, L., Jay Kim, J.H., Yi, S.T. (2008). Bond strength prediction for reinforced concrete members with highly corroded reinforcing bars, Cement and Concrete Composites, 30(7), 603-611. https://doi.org/10.1016/j.cemconcomp.2008.03.006
  5. DuraCrete Final Report. (2000). DuraCrete Probabilistic Performance Based Durability Design of Concrete Structures, Document BE95-1347/R17, European Brite-Euram III, Cur, Netherland.
  6. EN 1991. (2000). Eurocode 1 - Basis of Design and Actions on Structures, CEN.
  7. Ferreira, M., Arskog, V., Jalali, S., Gjorv, O.E. (2004). "Probability-Based Durability Analysis of Concrete Harbor Structures," Proceedings of CONSEC04, Seoul, Korea, 1(1), 999-1006.
  8. Hussain, S.E., Rasheeduzafar, S., Al-Musallam, A., Al-Gahtani, A.S. (1995). Factors affecting threshold chloride for reinforcement corrosion in concrete, Cement and Concrete Research, 25(7), 1543-1555. https://doi.org/10.1016/0008-8846(95)00148-6
  9. JSCE. (2002). Standard Specification for Concrete Structures.
  10. JSCE. (2007). Standard Specifications and Guidelines.
  11. Kwon, S.J., Na, U.J., Park, S.S., Jung, S.H. (2009). Service life prediction of concrete wharves with early-aged crack: probabilistic approach for chloride diffusion, Structure and Safety, 31(1), 75-83. https://doi.org/10.1016/j.strusafe.2008.03.004
  12. KCI. (2012). Concrete Standard Specification - Durability Part.
  13. Lee, S.H., Kwon, S.J. (2012). Experimental study on the relationship between time-dependent chloride diffusion coefficient and compressive strength, Journal of the Korea Concrete Institute, 24(6), 715-726. https://doi.org/10.4334/JKCI.2012.24.6.715
  14. Maekawa, K., Ishida, T., Kishi, T. (2003). Multi-scale modeling of concrete performance, Journal of Advanced Concrete Technology, 1(2), 91-126. https://doi.org/10.3151/jact.1.91
  15. Nawy, E.G. (1990). Reinforced Concrete-A Fundamental Approach-2nd Edition, Prentice Hall, USA, 69-72.
  16. Poulsen, E. (1993). "On a Model of Chloride Ingress into Concrete, Nordic Miniseminar-Chloride Transport," Department of Building Materials, Chalmers University of Technology, Gothenburg, Sweden.
  17. RILEM. (1994). Durability Design of Concrete Structures, Report of RILEM Technical Committee 130-CSL, E&FN, London, 28-52.
  18. Song, H.W., Pack, S.W., Lee, C.H., Kwon, S.J. (2006). Service life prediction of concrete structures under marine environment considering coupled deterioration, Journal of Restoration Building and Monuments, 12(4), 265-284.
  19. Stewart, M.G., Mullard, J.A. (2007). Spatial time-dependent reliability analysis of corrosion damage and the timing of first repair for RC structures, Engineering Structure, 29(7), 1457-1464. https://doi.org/10.1016/j.engstruct.2006.09.004
  20. Sudret, B. (2008). Probabilistic models for the extent of damage in degrading reinforced concrete structures, Reliability Engineering & System Safety, 93(3), 410-422. https://doi.org/10.1016/j.ress.2006.12.019
  21. Song, H.W., Pack, S.W., Ann, K.Y. (2009). Probabilistic assessment to predict the time to corrosion of steel in reinforced concrete tunnel box exposed to sea water, Construction and Building Materials, 23(10), 3270-3278. https://doi.org/10.1016/j.conbuildmat.2009.05.007
  22. Thomas, M.D.A., Bamforth, P.B. (1999). Modeling chloride diffusion in concrete: effect of fly ash and slag, Cement and Concrete Research, 29(4), 487-495. https://doi.org/10.1016/S0008-8846(98)00192-6
  23. Thomas, M.D,A., Bentz, E.C. (2002). Computer Program for Predicting the Service Life and Life-cycle Costs of Reinforced Concrete Exposed to Chlorides, Life365 Manual, SFA, 2-28.
  24. Tang, L., Joost, G. (2007). On the mathematics of time-dependent apparent chloride diffusion coefficient in concrete, Cement and Concrete Research, 37(4), 589-595. https://doi.org/10.1016/j.cemconres.2007.01.006
  25. Val, D.V., Trapper, P.A. (2008). Probabilistic evaluation of initiation time of chloride induced corrosion, Reliability Engineering & System Safety, 93(3), 364-372. https://doi.org/10.1016/j.ress.2006.12.010
  26. Yalciner, H., Eren, O., Sensoy, S. (2012). An experimental study on the bond strength between reinforcement bars and concrete as a function of concrete cover, strength and corrosion level, Cement and Concrete Research, 42(5), 643-655. https://doi.org/10.1016/j.cemconres.2012.01.003