DOI QR코드

DOI QR Code

비개착 일체형 파이프루프 지보효과의 실험적 분석

Experimental analysis for the effect of integrated pipe-roof in trenchless method

  • 심영종 (한국토지주택공사 토지주택연구원 도시환경연구실) ;
  • 진규남 (한국토지주택공사 토지주택연구원 도시환경연구실)
  • 투고 : 2016.08.01
  • 심사 : 2016.08.22
  • 발행 : 2016.09.30

초록

최근 비개착공법으로 지하차도 시공시 파이프루프를 형성하기 위해 강관을 지반에 압입한 후 강관자체를 보강하거나 강관과 강관사이를 일체화시켜 시공에 대한 안정성을 보다 증대시키고 있다. 이렇게 일체화된 파이프루프는 지하차도에 작용하는 응력을 감소시킬 것으로 예상이 된다. 이에 본 논문에서는 일체형 파이프루프의 지보효과와 주변의 응력거동을 확인하기 위해 사각형 지하차도 단면과 아치형 지하차도 단면에 대한 축소 실내모형실험을 수행하였다. 실내실험 결과 지하차도에 작용하는 응력과 변형률은 일체형 파이프루프에 의해 감소되는 것으로 나타났으며 파이프루프의 강성이 증대할수록 감소하는 것으로 나타났다. 더 나아가 지하차도 단면설계를 경제적으로 설계할 수 있을 것으로 기대가 된다.

In recent, in case that the underpass is constructed by trenchless method, its stability increases by reinforcing steel pipe with re-bar and mortar after propulsion into the ground to form pipe-roof. Therefore, it can be predicted that the integrated pipe-roof decreases the stress acting on the underpass by sharing load. In this study, to analyze the effect of integrated pipe-roof and behavior of stress around underpass, experimental tests for the rectangular and arch cross section of the underpass are performed using soil chamber. As a result, stress and strain acting on the underpass decrease due to sharing load by integrated pipe-roof. This phenomenon is more pronounced by increasing the stiffness of pipe-roof. Furthermore it can be expected that cross-section of underpass can be economically designed.

키워드

참고문헌

  1. Ahuja, V., Sterling, R.L. (2008), "Numerical modelling approach for microtunnelling assisted pipe-roof support system", World Tunnel Congress 2008 - Underground Facilities for Better Environment and Safety, pp. 1678-1687.
  2. Choi, S.W., Park, Y.T., Chang, S.H., Bae, G.J., Lee, K.T., Baek, Y.K. (2012), "An experimental study on the ground movement around a square pipe by its penetration for trenchless construction in sandy ground", J of Korean Tunn and Undergr Sp Assoc, Vol. 14, No. 5, pp. 485-501.
  3. Hisatake, M., Ohno, S. (2008), "Effects of pipe roof supports and the excavation method on the displacements above a tunnel face", Tunnel. Under. Space Tech, Vol. 23, pp. 120-127. https://doi.org/10.1016/j.tust.2007.02.002
  4. Kimura, H., Itoh, T., Iwata, M., Fujimoto, K. (2005), "Application of new urban tunneling method in Baikoh tunnel excavation", Tunneling and Underground Space Technology, Vol. 20, pp. 151-158. https://doi.org/10.1016/j.tust.2003.11.007
  5. Moh, Z.C., Hsiung, K.I., Huang, P.C., Hwang, R.N. (1999), "Underpass beneath Taipei international airport", Proceedings of Conference - New Frontiers and Challenges, November 8-12, Bangkok, Thailand.
  6. Sim, Y.J., Jin, K.N., Song, K.I. (2013), "Analysis on the characteristics of the earth pressure distribution induced by the integrated steel pipe-roof construction", J of Korean Tunn and Undergr Sp Assoc, Vol. 15, No. 5, pp. 455-468.
  7. Sim, Y.J., Jin, K.N., Song, K.I. (2015), "Comparison of earth pressure around pipe-roof between UPRS and front-jacking method", J of Korean Tunn and Undergr Sp Assoc, Vol. 17, No. 5, pp. 513-522.
  8. Eum, K.Y., Choi, C.Y., Cheon, J.Y. (2010), "Analysis of heaving and settlement test of scale model depending on shape of the pipe during pipe roof excavation", J. Korean Geosynthetics Society, Vol. 9, No. 4, pp. 9-15.
  9. Wallis, S. (1992), "Micro Assistance for Macro Undertaking in Atlanta", Tunnels and Tunneling, April, 1992, pp. 39-41.
  10. Wang, H.T., Jin, J.Q., Kang, H.G. (2009), "Analytical approach and field monitoring for mechanical behaviors of pipe roof reinforcement", J. Cent. South Univ. Technol., Vol. 16, pp. 0827-0834. https://doi.org/10.1007/s11771-009-0137-9