DOI QR코드

DOI QR Code

INSENS 기반의 무선 센서 네트워크에서 싱크홀 공격을 방어하기 위한 강화된 경로 설정 기법

Secure route determination method to prevent sinkhole attacks in INSENS based wireless sensor networks

  • 송규현 (성균관대학교 정보통신대학) ;
  • 조대호 (성균관대학교 소프트웨어대학)
  • Song, Kyu-Hyun (College of Information and Communication Engineering, Sungkyunkwan University) ;
  • Cho, Tae-Ho (College of Software, Sungkyunkwan University)
  • 투고 : 2016.06.14
  • 심사 : 2016.08.11
  • 발행 : 2016.08.25

초록

무선 센서 네트워크는 제약적인 하드웨어 자원과 무선 통신의 특징으로 인해 외부 침입에 취약하다. 따라서 공격자는 네트워크에 침입하여 싱크홀 공격을 시도할 수 있다. 이러한 싱크홀 공격을 방지하기 위해서 INSENS가 제안되었다. INSENS는 세 개의 대칭키를 사용하여 싱크홀 공격을 방지한다. 하지만 INSENS는 노드의 훼손을 고려하지 않기 때문에 훼손된 노드를 통해 싱크홀 공격이 다시 발생한다. 본 논문에서는 훼손된 노드를 통해 발생하는 싱크홀 공격을 이웃 노드들의 상태 정보를 사용하여 방지하는 기법을 제안한다. 제안 기법은 i) 공격을 안전하게 방지하여 네트워크의 신뢰성을 향상하고, ii) 에너지 소비 절감을 목표로 한다. 실험 결과 제안기법은 보고서의 신뢰성을 평균 71.50% 향상하고 에너지 소비를 평균 19.90% 절감한다.

Wireless sensor networks (WSNs) are vulnerable to external intrusions due to the wireless communication characteristics and limited hardware resources. Thus, the attacker can cause sinkhole attack while intruding the network. INSENS is proposed for preventing the sinkhole attack. INSENS uses the three symmetric keys in order to prevent such sinkhole attacks. However, the sinkhole attack occurs again, even in the presence of INSENS, through the compromised node because INSENS does not consider the node being compromised. In this paper, we propose a method to counter the sinkhole attack by considering the compromised node, based on the neighboring nodes' information. The goals of the proposed method are i) network reliability improvement and ii) energy conservation through effective prevention of the sinkhole attack by detecting compromised nodes. The experimental results demonstrate that the proposed method can save up to, on average, 19.90% of energy while increasing up to, on average, 71.50%, the report reliability against internal sinkhole attacks in comparison to INSENS.

키워드

참고문헌

  1. I. F. Akyildiz, W. Su, Y. Sankarasubramaniam and E. Cayirci, "A survey on sensor networks," Communications Magazine, IEEE, vol. 40, pp. 102-114, 2002 .
  2. K. Akkaya and M. Younis, "A survey on routing protocols for wireless sensor networks," Ad Hoc Networks, vol. 3, pp. 325-349, 2005. https://doi.org/10.1016/j.adhoc.2003.09.010
  3. Jong-Kyun Jeong and In-Ho Ra. Asynchronous and adaptive massage passing scheme for wireless sensor networks. Journal of Korean Institute of Intelligent Systems 23(3), pp. 196-201. 2013. https://doi.org/10.5391/JKIIS.2013.23.3.196
  4. Hyun-Tae Kim and In-Ho Ra. A fault-tolerant QoS routing scheme based on interference awareness for wireless sensor networks. Journal of Korean Institute of Intelligent Systems 22(2), pp. 148-153. 2012. https://doi.org/10.5391/JKIIS.2012.22.2.148
  5. Hyuk Park and Tae Ho Cho. Partial path selection method in each subregion for routing path optimization in SEF based sensor networks. Journal of Korean Institute of Intelligent Systems 22(1), pp. 108-113. 2012. https://doi.org/10.5391/JKIIS.2012.22.1.108
  6. Tae Hyoung Kim, Geuntaek Kang and Won Chang Lee. Clustering algorithm for efficient use of energy in wireless sensor network. Journal of Korean Institute of Intelligent Systems 20(1), pp. 36-41. 2010. https://doi.org/10.5391/JKIIS.2010.20.1.036
  7. X. Du and H. Chen, "Security in wireless sensor networks," Wireless Communications, IEEE, vol. 15, pp. 60-66, 2008 .
  8. J. Deng, R. Han and S. Mishra, "INSENS: Intrusion-tolerant routing for wireless sensor networks," Comput. Commun., vol. 29, pp. 216-230, 2006. https://doi.org/10.1016/j.comcom.2005.05.018
  9. E. Shi and A. Perrig, "Designing secure sensor networks," Wireless Communications, IEEE, vol. 11, pp. 38-43, 2004 .
  10. S. Zhu, S. Setia and S. Jajodia, "LEAP : Efficient security mechanisms for large-scale distributed sensor networks," ACM Transactions on Sensor Networks (TOSN), vol. 2, pp. 500-528, 2006. https://doi.org/10.1145/1218556.1218559
  11. Su-Man Nam and Tae-Ho Cho. Dynamic states consideration for next hop nodes selection method to improve energy efficiency in LEAP based wireless sensor networks. Journal of Korean Institute of Intelligent Systems 23(6), pp. 558-564. 2013. https://doi.org/10.5391/JKIIS.2013.23.6.558
  12. (Accessed: Jan. 11, 2016). MICAz: wireless measurement system. Available: http://trl.iba.edu.pk/Memsic-set-2.pdf.
  13. E. C. Ngai, J. Liu and M. R. Lyu, "An efficient intruder detection algorithm against sinkhole attacks in wireless sensor networks," Comput. Commun., vol. 30, pp. 2353-2364, 2007 . https://doi.org/10.1016/j.comcom.2007.04.025
  14. N. Gandhewar and R. Patel, "Detection and prevention of sinkhole attack on AODV protocol in mobile adhoc network," in Computational Intelligence and Communication Networks (CICN), 2012 Fourth International Conference on, 2012, pp. 714-718.
  15. I. Krontiris, T. Giannetsos and T. Dimitriou, "Launching a sinkhole attack in wireless sensor networks; the intruder side," in Networking and Communications, 2008. WIMOB'08. IEEE International Conference on Wireless and Mobile Computing, 2008, pp. 526-531.
  16. Kyu-Hyun Song and Tae-Ho Cho. Improvement robust bidirectional verification scheme for detecting routing attacks in enhanced INSENS based seneor netowrks. 2015, .
  17. F. Ye, H. Luo, S. Lu and L. Zhang, "Statistical en-route filtering of injected false data in sensor networks," Selected Areas in Communications, IEEE Journal on, vol. 23, pp. 839-850, 2005 . https://doi.org/10.1109/JSAC.2005.843561