Abstract
In this present work, the effect of hole shapes, orientation and hole arrangements on film cooling effectiveness has been carried out. For this work a flat plate has been considered for the computational model. Computational analysis of film cooling effectiveness using different hole shapes with no streamwise inclination has been carried out. Initially, the model with an inclination of $30^{\circ}$ has been verified with the experimental data. The validation results are well in agreement with the results taken from literature. Five different hole shapes viz. Cylindrical, Elliptic, Triangular, Semi-Cylindrical and Semi-Elliptic have been compared and validated over a wide range of blowing ratios. The blowing ratios ranged from 0.67 to 1.67. Later, orientation of holes have also been varied along with the number of rows and hole arrangements in rows. The performance of film cooling scheme has been given in terms of centerline and laterally averaged adiabatic effectiveness. Semi-elliptic hole utilizes half of the mass flow as in other hole shapes and gives nominal values of effectiveness. The triangular hole geometry shows higher values of effectiveness than other hole geometries. But when compared on the basis of effectiveness and coolant mass consumption, Semi-elliptic hole came out to give best results.