산차에 의한 젖소 초유 중 면역관련 단백질의 변화

Effect of Parity on Immune-related Proteins Components in Bovine Colostrum

  • 현연수 (한경대학교 동물생명환경과학과) ;
  • 김완섭 (한경대학교 동물생명환경과학과)
  • Hyon, Yeon Soo (Dept. of Animal Life Environmental Science, Hankyung National University) ;
  • Kim, Woan-Sub (Dept. of Animal Life Environmental Science, Hankyung National University)
  • 투고 : 2016.08.24
  • 심사 : 2016.09.10
  • 발행 : 2016.09.30

초록

본 연구는 젖소 초산우, 2산, 3산, 4산, 5산, 6산, 7산, 그리고 8산 초유의 분만 직후부터 5일간 전기영동을 통한 단백질 변화를 조사하였다. 분만 직후부터 5일간 전체적인 단백질 함량의 변화를 보면 초일 대부분의 단백질이 많이 함유되어 있다가 시간이 경과할수록 점점 감소하는 것을 보여주었다. 특히 면역과 감염예방에 관련되어 있는 면역 글로불린과 락토페린의 일일변화는 시간이 경과할수록 현저한 감소를 보여주었다. 면역글로불린은 분만 후 초일에 많은 함유량을 나타내고 있으나, 2일 후부터 현저히 감소하였으며, 이후 5일까지 감소하였다. 또한 락토페린도 분만 후, 초일에는 현저히 높은 함량을 나타내었다. 그러나 2일부터 면역글로불린과 같이 유의적으로 감소하는 것을 보여 주었다. 그 외, 혈액 내에서 여러 가지 기능을 하고 있는 것으로 알려져 있으나, 우유 속에서는 그 중요성이 낮은 것으로 보고된 혈청알부민은 분만 후 초일에는 함량이 높은 수준이었으나, 2일부터 함량이 급격히 감소되었다. 그 후, 3일부터 5일까지는 그 함량이 동일하게 유지되는 것을 보여주었다. 한편, 각 산차별 분만 후 일일 젖소 초유의 단백질 함량에 대하여 비교한 결과, 산차에 의한 단백질 함량의 차이는 나타나지 않았다.

This study examined changes in the components of dairy cow colostrum 1-5 days post delivery and between 1-5 days post-delivery, the contents of major proteins were largest on the first day, but declined gradually over time. Immunoglobulin, lactoferrin, bovine serum albumin, and lactoperoxidase exhibited the highest concentrations one day post-delivery. However, these levels decresed significantly on the second day and remained at a low level on the third. An examination of daily changes in colostrum composition in dairy cows after delivery, according to parity, could not detect changes in the levels of most proteins.

키워드

참고문헌

  1. Anema, S. G. 2009. The use of "lab-on-a-chip" microfluidic SDS electrophoresis technology for the separation and quantification of milk proteins. Inter. Dairy J. 19: 198-204. https://doi.org/10.1016/j.idairyj.2008.11.001
  2. Aoki, N., Furukawa, K., Iwatsuki, K., Noda, A., Sato, T., Nakamura, R. and Matsuda, T. 1995. A bovine IgG heavy chain contains N-acetylgalactosaminylated N-linked sugar chains. BBRC. 210:275-280.
  3. Aparna, H. S. and Salimath, P. V. 1999. Acidic glycoproteins of buffalo colostrum and their influence on the growth of Bifidobacterium bifidus. Nutr. Res. 19:295-303. https://doi.org/10.1016/S0271-5317(98)00192-4
  4. Besser, T. E. and Gay, C. C. 1994. The importance of colostrum to the health of the neonatal calf. Vet. Clin. North Am. Food Anim. Pract. 10:107-117. https://doi.org/10.1016/S0749-0720(15)30591-0
  5. Brandon, M. R., Watson, D. L. and Lascelles, A. K. 1971. The mechanism of transfer of immunoglobulin into mammary secretion of cows. Aust. J. Exp. Biol. Med. Sci. 49:613-623. https://doi.org/10.1038/icb.1971.67
  6. Brew, K., Castellino, F. J., Vanaman, T. C. and Hill, R. L. 1970. The complete amino acid sequence of bovine ${\alpha}$-lactalbumin. J. Biol. Chem. 10:4570-4582.
  7. Butler, J. E. 1979. immunologic aspects of breast feeding, antiinfectious activity of breast milk. Semin. Perinatol. 3:255-270.
  8. Butler, J. E. 1983. Bovine immunoglobulins: An augmented review. Vet. Immunol. Immunopathol. 4:43-152. https://doi.org/10.1016/0165-2427(83)90056-9
  9. Dabur, R. S., Srivastava, D. N. and Kapoor, C. M. 1996. Effect of season, separation and heating temperatures on the residual thiocyanate levels in lactoperoxidase- preserved buffalo milk. J. Dairy Food Home Sci. 15:30-34.
  10. de Wit, J. N. 1998. Nutritional and functional characteristics of whey proteins in food products. J. Dairy Sci. 81:597-602. https://doi.org/10.3168/jds.S0022-0302(98)75613-9
  11. de Wit, J. N. and van Hooydonk, A. C. M. 1996. Structure, functions and applications of lactoperoxidase in natural antimicrobial systems. Netherlands Milk Dairy J. 50:227-244.
  12. Donovan, S. M. and Odle, J. 1994. Growth factors in milk as midiators of infant development. Annu. Rev. of Nutr. 14:147-167. https://doi.org/10.1146/annurev.nu.14.070194.001051
  13. Edwards, P. J. B. and Jameson, G. B. 2014. Structure and stability of whey proteins. In M. Boland, H. Singh, and A. K. Thomson (Eds.), Milk proteins: From expression to food (2nd ed.), (pp. 201-242), London, UK: Academic Press.
  14. Eigel, W. N., Butler, J. E., Ernstrom, C. A., Farrell, H. M., Harwalkar, V. R., Jenness, R. and Whitney, R. McL. 1984. Nomenclature of proteins of cow's milk: Fifth revision. J. Dairy Sci 67:1599-1631. https://doi.org/10.3168/jds.S0022-0302(84)81485-X
  15. Elfstrand, L., Lindmark-Mansson, H., Paulsson, M., Nyberg, L. and Akesson, B. 2002. Immunoglobulins, growth factors and growth hormone in bovine colostrum and the effects of processing. Inter. Dairy J. 12:879-887. https://doi.org/10.1016/S0958-6946(02)00089-4
  16. Erdei, J.. Forsgren, A. and Naidu, A. S. 1994. Lactoferrin binds to porins OmpF and OmpC in Escherichia coli. Infection and Immunity 62:1236-1240.
  17. Eto, S., Nishida, K., Ohno, S., Nishino, A., Sao, A., Hoshi, Y., Mizufuji, Y., Kanai, T. and Ishikawa, H. 1982. Correlation among the first colostrum feeding time, serum immunoglobulin levels and occurrence of diarrhea in neonatalcalves. J. Jpn. Vet. Med. Assoc. 35:708-712. (in Japanese). https://doi.org/10.12935/jvma1951.35.708
  18. Farrell, H. M., Jimenez-Flores, R., Bleck, G. T., Brown, E. M., Butler, J. E., Creamer, L. K., Hicjs, C. L., Hollar, C. M., Ng-Kwai-Hang, K. F. and Swaisgood, H. E. 2004. Nomenclature of the proteins of cows' milk- sixth revision. J. Dairy Sci. 87:1641-1674. https://doi.org/10.3168/jds.S0022-0302(04)73319-6
  19. Foley, J. A. and Otterby. D. E. 1978. Availability, storage, treatment, composition, and feeding value of surplus colostrum. A review. J. Dairy Sci. 61:1033-1060. https://doi.org/10.3168/jds.S0022-0302(78)83686-8
  20. Korhonen, H., Syvaeoja, E. L., Ahola-Luttila, H., Sivela, S., Kopola, S. and Husu, J. 1995. Bactericidal effect of bovine normal and immune serum, colostrum and milk against Helicohacter pvlori. J. App. Bacteriol. 78:655-662. https://doi.org/10.1111/j.1365-2672.1995.tb03112.x
  21. Kume, S. and Tanabe, S. 1992. Variation of mineral content in colostrum of dairy cows during 5 days after parturition. Jpn. J. Zootech. Sci. 63:864-866. (in Japanese)
  22. Kyuma, T., Tanaka, S., takahashi, M. and Yonai, M. 1986. Changes in immunoglobulin levels with age in serum and colostrum of beef heifers and cows. Jpn. J. Zootech. Sci. 57:561-567. (in Japanese)
  23. Lammli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680-685. https://doi.org/10.1038/227680a0
  24. Larson, L. L., Owen, F. G., Albright, J. L., Appleman, R. D., Lamb, R. C. and Muller, L. D. 1997. Guidelines toward more uniformity in measuring and reporting calf experimental data. J. Dairy Sci. 60:989-1003.
  25. Logan, E. F. and Pearson, G. R. 1978. The distribution of immunoglobulins in the intestine of the neonatal calf. Ann. Rech. Vet. 9:319-326.
  26. Lomba, F., Fumiere, I., Tshibanqu, M., Chauvaux, G. and Bienfet, V. 1978. Immunoglobulin transfer to calves and health problems in large bovine units. Ann. Rech. Vet. 9:353-360.
  27. Madureira, A. R., Pereira, C. I., Gomes, A. M. P., Pintado, M E. and Malcata, F. X. 2007. Bovine whey proteinsoverview on their main biological properties. Food Res. Inter. 40:1197-1211. https://doi.org/10.1016/j.foodres.2007.07.005
  28. Maki, Z., Horiuchi, A. and Kanamori, M. 1971. Zone electrophoresis of bovine colostrum protein. J. Jap. Soc. Food and Nutr. 24:452-456. (in Japanese)
  29. Masson, P. L. and Heremans, J. F. 1971. Lactoferrin in Milk from different species. Comp. Biochem. Physiol. B. 39:119-129.
  30. Mohanty, D. P., Mohapatra, S., Misra, S. and Sahu, P. S. 2016. Milk derived bioactive peptides and their impact on human health - A review. Saudi J. Biol. Sci. 23:577-583. https://doi.org/10.1016/j.sjbs.2015.06.005
  31. Naidu, A. S. and Arnold, R. R. 1994. Lactoferrin interaction with Salmonellae potentiates antibiotic susceptibility in vitro. Diagn. Microbiol. Infect. Dis. 20:69-75. https://doi.org/10.1016/0732-8893(94)90094-9
  32. Pakkanen, R. and Aalto, J. 1997. Growth factors and antimicrobial factors of bovine colostrum. Inter. Dairy J. 7:285-297. https://doi.org/10.1016/S0958-6946(97)00022-8
  33. Parrish, D. B., Wise, G. H., Hughes, J. S. and Atkeson, F. W. 1950. Properties of the colostrum of the dairy cow. V. yield, specific gravity and concentrations of total solids and its various components of colostrum and early milk. J. Dairy Sci. 33:457-465. https://doi.org/10.3168/jds.S0022-0302(50)91921-7
  34. Piot, M., Fauquant, J., Madec, M. N. and Maubois, J. L. 2004. Preparation of serocolostrum by membrane microfiltration. Lait 84:333-341. https://doi.org/10.1051/lait:2004011
  35. Pouliot, Y. and Gauthier, S. F. 2006. Milk growth factors as health products: Some technological aspects. Inter. Dairy J. 16:1415-1420. https://doi.org/10.1016/j.idairyj.2006.06.006
  36. Reiter. B. 1978. Review of the progress of dairy science; Antimicrobial systems in milk. J. Dairy Res. 45:131-147. https://doi.org/10.1017/S0022029900016290
  37. Schams, D. 1994. Growth factors in milk. Endocr. Requl. 28:3-8.
  38. Shimazaki, K. 2000. Lactoferrin: A marvelous protein in milk. Anim. Sci. J. 71:329-347.
  39. Suzuki, T., Nonaka, M., Kiyosawa, I. and Ogasa, K. 1977. Lactoferrin contents in bovine colostrum and milk. J. Japan Soc. Nutr. Food Sci. 30:317-322.
  40. Tacket, C. O., Binion, S. B., Bostwick, E., Losonsky, G., Roy, M. J. and Edelman, R. 1992. Efficacy of bovine immunoglobulin concentrate in preventing illness after Shigella flexneri challenge. Am. J. Trop. Med. Hyg. 47:276-283. https://doi.org/10.4269/ajtmh.1992.47.276
  41. Thomas, E. L. 1981. Lactoperoxidase-catalysed oxidation of thiocyanate. The equilibrium between oxidised forms of thiocyanate. Biochem. 20:3273-3280. https://doi.org/10.1021/bi00514a045
  42. Tsioulpas, A., Grandison, A. S. and Lewis M. J. 2007. Changes in physical properties of bovine milk from the colostrum period to early lactation. J. Dairy Sci. 90:5012-5017. https://doi.org/10.3168/jds.2007-0192
  43. Uruakpa, F. O., Ismond, M. A. H. and Akobundu, E. N. T. 2002. Colostrum and its benefits: a review. Nutr. Res. 22:755-767. https://doi.org/10.1016/S0271-5317(02)00373-1
  44. Wallach, D. 1974. Placental structure and transmission of maternal immunity, Vet. Rec. 95:573-574.
  45. Xu, L. B., Chen, L., Gao, W. and Du, K. H. 2006. Bovine immune colostrum against 17 strains of diarrhea bacteria and in vitro and in vivo effects of its specific IgG. Vaccine 24:2131-2140. https://doi.org/10.1016/j.vaccine.2005.11.009
  46. Zapico, P., Gaya, P., de Paz, M., Nunez, M. and Medina, M 1991. Influence of breed, animal anddays of laction on lactoperoxidase system components in goat milk. J. Dairy Sci. 74:783-787. https://doi.org/10.3168/jds.S0022-0302(91)78225-8
  47. Zapico, P., Gaya, P., Nunez, M. and Medina, M 1995. Activity of goat's milk lactoperoxidase system on Pseudomonas fluorescens and Escherichia coli at refrigeration temperatures. J. Food Protec. 58:1136-1138. https://doi.org/10.4315/0362-028X-58.10.1136