DOI QR코드

DOI QR Code

Theoretical study on electronic properties of deoxyfluorinating sulfur-based reagents

  • Lim, Soobin (Center for Self-assembly and Complexity, Institute for Basic Science (IBS), Pohang University of Science and Technology) ;
  • Lee, Eunsung (Center for Self-assembly and Complexity, Institute for Basic Science (IBS), Pohang University of Science and Technology)
  • 투고 : 2016.05.13
  • 심사 : 2016.06.01
  • 발행 : 2016.06.30

초록

Organofluorine compounds have become increasingly important as pharmaceuticals, radiopharmaceuticals, agrochemicals, and material science. Recent advances on the efficient introduction of fluorine to organic molecules are mainly results of development of transition metal catalysts and fluorination reagents. Among the various fluorination reagents, we have been interested in developing more efficient sulfur-based deoxyfluorinating reagents. Here we report various electronic properties of five popular sulfur-based deoxyfluorinating reagents using density functional theory calculation. We believe that the theoretical study on the reagents will assist the rational design of new deoxyfluorinating reagents.

키워드

참고문헌

  1. (a) Wang J, Sanchez-Rosello M, Acena JL, del Pozo C, Sorochinsky AE, Fustero S, Soloshonok VA, Liu H. Fluorine in pharmaceutical industry: fluorine-containing drugs introduced to the market in the last decade (2001-2011). Chem Rev 2014;114:2432-2506. https://doi.org/10.1021/cr4002879
  2. (b) Ilardi EA, Vitaku E, Njardarson JT. Data-mining for sulfur and fluorine: an evaluation of pharmaceuticals to reveal opportunities for drug design and discovery. J Med Chem 2014;57: 2832-2842. https://doi.org/10.1021/jm401375q
  3. (c) Jeschke P. The unique role of fluorine in the design of active ingredients for modern crop protection. Chembiochem 2004;5:571-589.
  4. O'Hagan D. Understanding organofluorine chemistry. An introduction to the C-F bond. Chem Soc Rev 2008;37:308-319. https://doi.org/10.1039/B711844A
  5. Purser S, Moore PR, Swallow S, Gouverneur V. Fluorine in medicinal chemistry. Chem Soc Rev 2008;37:320-330.
  6. Tredwell M, Gouverneur V. 18F Labeling of arenes. Angew Chem Int Ed Engl 2012;51:11426-11437. https://doi.org/10.1002/anie.201204687
  7. Gribble GW. Natural organohalogens: a new frontier for medicinal agents? J Chem Ed 2004;81:1441-1449. https://doi.org/10.1021/ed081p1441
  8. Furuya T, Kuttruff CA, Ritter T. Carbon-fluorine bond formation. Curr Opin Drug Discov Devel 2008;11:803-819.
  9. (a) Hasek WR, Smith WC, Engelhardt VA. The chemistry of sulfur tetrafluoride. II. The fluorination of organic carbonyl compounds. J Am Chem Soc 1960;82:543. https://doi.org/10.1021/ja01488a012
  10. (b) Middleton WJ. Tetrafluorodithiosuccinyl difluoride. J Org Chem 1975;40:574. https://doi.org/10.1021/jo00893a007
  11. (c) Markovskij LN, Pashinnik VE, Kirsanov AV. Application of Dialkylaminosulfur Trifluorides in the Synthesis of Fluoroorganic Compounds. Synthesis 1973;12:787.
  12. (d) Lal GS, Pez GP, Pesaresi RJ, Prozonic FM, Cheng H. Bis(2-methoxyethyl)aminosulfur trifluoride: a new broad-spectrum deoxofluorinating agent with enhanced thermal stability. J Org Chem 1999;64:7048. https://doi.org/10.1021/jo990566+
  13. (e) Beaulieu F, Beauregard LP, Courchesne G, Couturier M, LaFlamme F, L'Heureux A. Aminodifluorosulfinium tetrafluoroborate salts as stable and crystalline deoxofluorinating reagents. Org Lett 2009; 11:5050-5053.
  14. (f) Umemoto T, Singh RP, Xu Y, Saito N. Discovery of 4-tert-butyl-2,6-dimethylphenylsulfur trifluoride as a deoxofluorinating agent with high thermal stability as well as unusual resistance to aqueous hydrolysis, and its diverse fluorination capabilities including deoxofluoro-arylsulfinylation with high stereoselectivity. J Am Chem Soc 2010;132:18199-18205. https://doi.org/10.1021/ja106343h
  15. (a) Hayashi H, Sonoda H, Fukumura K, Nagata T. 2,2-Difluoro-1,3-dimethylimidazolidine (DFI). A new fluorinating agent. Chem Commun 2002;15:1618.
  16. (b) Sladojevich F, Arlow SI, Tang P, Ritter T. Late-stage deoxyfluorination of alcohols with PhenoFluor. J Am Chem Soc 2013;135:2470-2473. https://doi.org/10.1021/ja3125405
  17. (a) Shimizu M, Nakahara Y, Yoshioka H. Chemoselective fluorination for primary alcohols. Tetrahedron Lett 1985;26:4207. https://doi.org/10.1016/S0040-4039(00)98993-7
  18. (b) Bennua-Skalmowski B, Vorbruggen H. A facile conversion of primary or secondary alcohols with n-perfluorobutane-sulfonyl fluoride/1,8-diazabicyclo[5.4.0]undec-7-ene into their corresponding fluorides. Tetrahedron Lett 1995;36:2611. https://doi.org/10.1016/0040-4039(95)00355-G
  19. (a) Rozen S, Faust Y, Ben-Yakov H. A new method for fluorination of sterols. Tetrahedron Lett 1979;20:1823-1826. https://doi.org/10.1016/S0040-4039(01)86228-6
  20. (b) Singh RP, Shreeve JM. Recent Advances in Nucleophilic Fluorination Reactions of Organic Compounds Using Deoxofluor and DAST. Synthesis 2002;17:2561-2578.
  21. (c) Ishii S, Niwa Y, Watanabe S. Deoxyfluorination of a-N-phthaloyl cycloalkanones with bis(2- methoxyethyl)aminosulfur trifluoride (Deoxo-Fluor$^{(R)}$). J Fluorine Chemistry 2016;182:41-46. https://doi.org/10.1016/j.jfluchem.2015.12.001
  22. Frisch MJ, et al. Gaussian 09, Revision B.01. Gaussian, Inc., Wallingford CT, 2010.