DOI QR코드

DOI QR Code

초고강도 콘크리트의 고온 변형 특성을 고려한 변형모델 상수 검토

Examination of Strain Model Constants considering Strain Properties at High Temperature of Ultra-high-strength Concrete

  • 투고 : 2016.09.08
  • 심사 : 2016.10.06
  • 발행 : 2016.11.01

초록

초고강도 콘크리트를 이용한 부재의 내화 성능을 검토하기 위해서는 실제부재 단위의 시험에 의한 평가가 요구되고 있다. 그러나 실제부재 실험을 하기 위해서는 재하 능력이 큰 시험 장비가 필요하기 때문에, 재료 모델을 이용한 해석적 연구를 통해 내화 성능을 평가하고 있다. 본 연구에서는 80, 130 및 180 MPa의 초고강도 콘크리트를 대상으로 고온 가열시의 변형 특성을 실험적으로 평가하고 초고강도 콘크리트에 대한 기존 변형 모델의 적용을 검토했다. 그 후, 최소 제곱법에 의해 실험 값과 기존의 변형 모델을 적용한 계산 값의 누적 오차가 가장 작은 상수 값을 도출하고 초고강도 콘크리트에 적용 할 수 있는 변형 모델을 제시했다.

Evaluation on the test of actual concrete member to confirm the fire resistance of the concrete member using ultra-high strength concrete is required. However, test equipment which has large loading capacity is needed to the actual member experiment. So, many researchers evaluated the fire performance through analytical studies using the material models. This study experimentally evaluated strain properties on ultra-high-strength concrete of 80, 130 and 180 MPa with heating and examined to apply the existing strain model about ultra-high-strength concrete. As a results, constants are drawn by method of least squares applying experimental values and calculated values by the existing strain model, it proposed strain model that can be applied to ultra-high-strength concrete.

키워드

참고문헌

  1. Anderberg, Y., and Thelandersson, S. (1976), Stress and Deformation Characteristics of Concrete, 2-Experimental Investigation and Material Behavior Model, Bulletin 54, University of Lund, Sweden.
  2. Castillo, C., and Durrani, A. J. (1990), Effect of Transient High Temperature on High-strength Concrete, ACI Materials Journal, 81(1), 47-53.
  3. ECCS-Technical Committee 3 (2001), Model Code on Fire Engineering, European Convention for Constructional Steel Work, First Edition, 47.
  4. Eurocode2 (2004), Design of Concrete Structures, Part 1-2, General rules-structural fire design, The European Standard EN1992-1-2.
  5. Hideki, K., Yuji, I., Atsushi, K., and Hiroto, T. (2007), Seismic Behavior of 200 MPa Ultra High Strength Steel Fiber Reinforced Concrete Columns under Varying Axial Load. Journal of advanced concrete technology, 5(2), 193-200. https://doi.org/10.3151/jact.5.193
  6. Kalifa, P., Menneteau, F. D., and Quenard, D. (2000), Spalling and Pore Pressure in HPC at High Temperatures. Cement and Concrete Research, 30, 1915-1927. https://doi.org/10.1016/S0008-8846(00)00384-7
  7. Koji, T., Heisuke, Y., Masatoshi, T., Takeo, H., and Hideki, U. (2010), Experimental Study on Transient Strain of 100 N/$mm^2$ High Strength Concrete exposed to Fire.
  8. Lin, T. D., Ellingwood, B., and Piet, O. (1988), Flexural and Shear Behavior of Reinforced Concrete Beams during Fire Tests, PCA R&D Serial No. 1879.
  9. RILEM TC 129-MHT (1995), Part 3-Compressive Strength for Service and Accident Conditions. Material and structures, 28, 410-414. https://doi.org/10.1007/BF02473077
  10. Tao, J., Liu, X., Yuan, Y., and Taerwe, L. (2013), Transient Strain of Self-compacting Concrete Loaded in Compression Heated to $700^{\circ}C$, Materials and Structures, 191-201.
  11. Yamamoto, K., Watanabe, T. S., and Shimizu, Y. (2011), High-rise Building Operations using Ultra High Strength Concrete with a Design Strength of 200 MPa. Concrete Journal, 49(8), 37-42. https://doi.org/10.3151/coj.49.1_37