DOI QR코드

DOI QR Code

복수 실내기를 가지는 에어컨의 정상상태 성능해석

Steady-State Performance Analysis of Air Conditioner with Multi-Indoor Units

  • 허현 (LG전자 에어솔루션 연구소) ;
  • 이진욱 (LG전자 에어솔루션 연구소) ;
  • 정의국 (LG전자 에어솔루션 연구소) ;
  • 김병순 (LG전자 에어솔루션 연구소)
  • 투고 : 2016.05.30
  • 심사 : 2016.09.01
  • 발행 : 2016.11.01

초록

본 연구의 목적은 에어컨 사이클 성능해석에 있다. 응축기, 증발기, 팽창밸브 및 압축기는 냉동사이클을 구성하는 핵심요소이다. 사이클의 개별적인 구성요소들에 대한 해석 기법들을 합리적으로 통합하여 다양한 운전조건에서 에어컨 시스템 성능예측이 가능하도록 하였다. 응축기 압력은 압축기 질량유량과 팽창밸브 유량이 일치하도록 반복계산에 의해 획득되며, 증발기 압력은 목표 흡입과열도가 획득되도록 압축기 흡입엔탈피를 반복계산에 의해 획득되었다. 더 나아가서 복수 실내기를 장착한 에어컨 시스템의 성능이 예측될 수 있도록 알고리듬들이 마련되었으며, 이들 모델들에 대한 해석결과를 제시하였다. 소프트웨어의 정확성은 실험결과에 의해 증명 되었다. 특히, 8.3 kW급 모델의 실험결과와 비교함으로써, 소프트웨어의 정확성이 다양하게 검정되었다. 해석결과로써, 정확성은 대체적으로 10% 이내에 있는 것으로 확인되어 우수한 신뢰성이 확보되었다.

In this study, the cycle performance of an air conditioner with multi-indoor units is analyzed and simulated. The cycle performance could be predicted through the integration of mathematical formulation for these devices. The condenser pressure is obtained by an iteration process to match the mass flow rates of the compressor and the expansion valve and the evaporator pressure is determined by an iteration process, in which the suction super heat is tracing the targeted super heat. The required software was developed by system programming. the software algorithm is extended to predict the cycle performance of an air conditioner system with multi-indoor units, and then the numerical results are compared with experimental results. This mathematical model is validated from the result of experiments conducted on 8.3kW air conditioner. The errors in capacity, electronic power, and COP are found to be within 10% in general.

키워드

참고문헌

  1. Koury, R. N. N., Machado, L. and Ismail, K. A. R., 2001, "Numerical Simulation of a Variable Speed Refrigeration System," Int. J. of Refrigeration, Vol. 24, pp. 192-200. https://doi.org/10.1016/S0140-7007(00)00014-1
  2. Domanski, P. and Didion, D., 1983, "Computer Modeling of the Vapor Compression Cycle with Constant Flow Area Expansion Device," National Bureau of Standards Building Science Series 155, Project Report, pp. 1-162.
  3. Elliott, M. S. and Rasmussen, B. P., 2013, "Decentralized Model Predictive Control of a Multi- Evaporator Air Conditioning System," Control Engineering Practice, Vol. 21, pp. 1665-1677. https://doi.org/10.1016/j.conengprac.2013.08.010
  4. Lin, J. L. and Yeh, T. J., 2007, "Identification and Control of Multi-Evaporator Air-Conditioning Systems," Int. J. of Refrigeration, Vol. 30, pp. 1374-1385. https://doi.org/10.1016/j.ijrefrig.2007.04.003
  5. Shao, S., Xu, H. and Tian, C., 2012, "Dynamic Simulation of Multi-unit Air Conditioners Based on Two-phase Fluid Network Model," Applied Thermal Engineering, Vol. 40, pp. 378-388. https://doi.org/10.1016/j.applthermaleng.2012.02.022
  6. Yan, H., Deng, S. and Chan, M., 2016, "Developing and Validating a Dynamic Mathematical Model of a Three-evaporator Air Conditioning (TEAC) System," Applied Thermal Engineering, Vol. 100, pp. 880- 892. https://doi.org/10.1016/j.applthermaleng.2016.02.105
  7. Zhang, W. J. and Zhang, C. J., 2011, "Transient Modeling of an Air Conditioner with a Rapid Cycling Compressor and Multi-indoor Units," Energy Conversion and Management, Vol. 52, pp. 1-7. https://doi.org/10.1016/j.enconman.2010.05.002
  8. Zhu, Y., Jin, X., Du, Z., Fan, B. and Fu, S., 2013, "Generic Simulation Model of Multi-evaporator Variable Refrigerant Flow Air Conditioning System for Control Analysis," Int. J. of Refrigeration, Vol. 36, pp. 1602-1615. https://doi.org/10.1016/j.ijrefrig.2013.04.019
  9. Wu, C., Xingxi, Z. and Shiming, D., 2005, "Development of Control Method and Dynamic Model for Multi-evaporator Air Conditioners (MEAC), "Energy Conversion & Management, Vol. 46, pp. 451-465. https://doi.org/10.1016/j.enconman.2004.03.004
  10. Waltrich, M. and Hermes, C. J. L., Goncalves, J. M. and Melo, C., 2010, "A First-Principles Simulation Model for the Thermo-Hydraulic Performance of Fan Supplied Tube-Fin Heat Exchangers," Applied Thermal Engineering, Vol. 30, 2011-2018. https://doi.org/10.1016/j.applthermaleng.2010.05.006
  11. Lee, J. H., Kwon, Y. C. and Kim, M. H., 2003, "An Improved Method for Analyzing a Fin and Tube Evaporator Containing a Zeotropic Mixture Refrigerant with Air Mal-Distribution," Int. J. of Refrigeration, Vol. 26, 2003, pp. 707-720. https://doi.org/10.1016/S0140-7007(03)00023-9
  12. Shah, K. and Sekuli, D. P., 2003, Fundamentals of Heat Exchanger Design, First edition, New Jersey; John Wiley & Sons, pp. 110-400.
  13. Cary, V. P., 1992, Liquid-Vapor Phase-Change Phenomena: An Introduction to the Thermophysics of Vaporization and Condensation Processes in Heat Transfer Equipment, Taylor and Francis, pp. 85-252.
  14. Liang, C., Jinghui, L., Jiangping, C. and Zhijiu, C., 2009, "A New Model of Mass Flow Characteristics in Electronic Expansion Valves Considering Metastability," Int. J. of Thermal Sciences, Vol. 48, pp. 1235-1242. https://doi.org/10.1016/j.ijthermalsci.2008.10.002