DOI QR코드

DOI QR Code

Role of Fermentation in Improving Nutritional Quality of Soybean Meal - A Review

  • Mukherjee, Runni (Department of Food Technology and Biochemical Engineering, Jadavpur University) ;
  • Chakraborty, Runu (Department of Food Technology and Biochemical Engineering, Jadavpur University) ;
  • Dutta, Abhishek (Faculteit Industriele Ingenieurswetenschappen, KU Leuven, Campus Groep T Leuven)
  • 투고 : 2015.07.27
  • 심사 : 2015.12.01
  • 발행 : 2016.11.01

초록

Soybean meal (SBM), a commonly used protein source for animal feed, contains anti-nutritional factors such as trypsin inhibitor, phytate, oligosaccharides among others, which limit its utilization. Microbial fermentation using bacteria or fungi has the capability to improve nutritional value of SBM by altering the native composition. Both submerged and solid state fermentation processes can be used for this purpose. Bacterial and fungal fermentations result in degradation of various anti-nutritional factors, an increase in amount of small-sized peptides and improved content of both essential and non-essential amino acids. However, the resulting fermented products vary in levels of nutritional components as the two species used for fermentation differ in their metabolic activities. Compared to SBM, feeding non-ruminants with fermented SBM has several beneficial effects including increased average daily gain, improved growth performance, better protein digestibility, decreased immunological reactivity and undesirable morphological changes like absence of granulated pinocytotic vacuoles.

키워드

참고문헌

  1. Adams, N. R. 1995. Detection of the effects of phytoestrogens on sheep and cattle. J. Anim. Sci. 73:1509-1515. https://doi.org/10.2527/1995.7351509x
  2. Amadou, I., A. Tidjani, M. B. K. Foh, M. T. Kamara, and G. W. Le. 2010a. Influence of Lactobacillus plantarum Lp6 fermentation on the functional properties of soybean protein meal. Emir. J. Food Agric. 22:456-465. https://doi.org/10.9755/ejfa.v22i6.4663
  3. Amadou, I., M. T. Kamara, A. Tidjani, M. B. K. Foh, and G. W. Le. 2010b. Physicochemical and nutritional analysis of fermented soybean protein meal by Lactobacillus plantarum Lp6. World J. Dairy Food Sci. 5:114-118.
  4. Amadou, I., G. W. Le, Y. H. Shi, and S. Jin. 2011. Reducing, radical scavenging, and chelation properties of fermented soy protein meal hydrolysate by Lactobacillus plantarum Lp6. Int. J. Food Prop. 14:654-665. https://doi.org/10.1080/10942910903312502
  5. Chah, C. C., C. W. Carlson, G. Semeniuk, I. S. Palmer, and C. W. Hesseltine. 1975. Growth promoting effects of fermented soyabeans for broilers. Poult. Sci. 54:600-609. https://doi.org/10.3382/ps.0540600
  6. Cervantes-Pahm, S. K. and H. H. Stein. 2010. Ileal digestibility of amino acids in conventional, fermented, and enzyme-treated soybean meal and in soy protein isolate, fish meal, and casein fed to weanling pigs. J. Anim. Sci. 88:2674-2683. https://doi.org/10.2527/jas.2009-2677
  7. Dunsford, B. R., D. A. Knabe, and W. E. Hacnsly. 1989. Effect of dietary soybean meal on the microscopic anatomy of the small intestine in the early-weaned pig. J. Anim. Sci. 67:1855-1864. https://doi.org/10.2527/jas1989.6771855x
  8. Egounlety, M. and O. C. Aworh. 2003. Effect of soaking, dehulling, cooking and fermentation with Rhizopus oligosporus on the oligosaccharides, trypsin inhibitor, phytic acid and tannins of soybean (Glycine max Merr.), cowpea (Vigna unguiculata L. Walp) and ground bean (Macrotyloma geocarpa Harms). J. Food Eng. 56:249-254. https://doi.org/10.1016/S0260-8774(02)00262-5
  9. Feng, J., X. Liu, Z. R. Xu, Y. Y. Liu, and Y. P. Lu. 2007a. Effects of Aspergillus oryzae 3.042 fermented soybean meal on growth performance and plasma biochemical parameters in broilers. Anim. Feed Sci. Technol. 134:235-242. https://doi.org/10.1016/j.anifeedsci.2006.08.018
  10. Feng, J., X. Liu, Z. R. Xu, Y. P. Lu, and Y. Y. Liu. 2007b. The effect of Aspergillus oryzae fermented soybean meal on growth performance, digestibility of dietary components and activities of intestinal enzymes in weaned piglets. Anim. Feed Sci. Technol. 134:295-303. https://doi.org/10.1016/j.anifeedsci.2006.10.004
  11. Frias, J., Y. S. Song, C. Martinez-Villaluenga, E. G. De Mejia, and C. Vidal-Valverde. 2008. Immunoreactivity and amino acid content of fermented soybean products. J. Agric. Food Chem. 56:99-105. https://doi.org/10.1021/jf072177j
  12. Han, B. Z., F. M. Rombouts, and M. J. R. Nout. 2001. A Chinese fermented soybean food. Int. J. Food Microbiol. 65:1-10. https://doi.org/10.1016/S0168-1605(00)00523-7
  13. Hirabayashi, M., T. Matsui, H. Yano, and T. Nakajima. 1998. Fermentation of soybean meal with Aspergillus usamii reduces phosphorus excretion in chicks. Poult. Sci. 77:552-556. https://doi.org/10.1093/ps/77.4.552
  14. Hong, K. J., C. H. Lee, and S. W. Kim. 2004. Aspergillus oryzae 3.042GB-107 fermentation improves nutritional quality of food soybeans and feed soybean meals. J. Med. Food 7:430-434. https://doi.org/10.1089/jmf.2004.7.430
  15. Hotz, C. and R. S. Gibson. 2007. Traditional food-processing and preparation practices to enhancing the bioavailability of micronutrients in plant-based diets. J. Nutr. 137:1097-1100. https://doi.org/10.1093/jn/137.4.1097
  16. Ilyas, A., M. Hirabayashi, T. Matsui, H. Yano, F. Yano, T. Kikushima, M. Takebe, and K. Hayakawa. 1995. A note on the removal of phytate in soybean meal using Aspergillus usami. Asian Australas. J. Anim. Sci. 8:135-138. https://doi.org/10.5713/ajas.1995.135
  17. Jones, C. K., J. M. DeRouchey, J. L. Nelssen, M. D. Tokach, S. S. Dritz, and R. D. Goodband. 2010. Effects of fermented soybean meal and specialty animal protein sources on nursery pig performance. J. Anim. Sci. 88:1725-1732. https://doi.org/10.2527/jas.2009-2110
  18. Kader, M. A., S. Koshio, M. Ishikawa, S. Yokoyama, M. Bulbul, B. T. Nguyen, J. Gao, and A. Laining. 2012. Can fermented soybean meal and squid by-product blend be used as fishmeal replacements for Japanese flounder (Paralichthys olivaceus)? Aquac. Res. 43:1427-1438. https://doi.org/10.1111/j.1365-2109.2011.02945.x
  19. Kishida, T., H. Ataki, M. Takebe, and K. Ebihara. 2000. Soybean meal fermented by Aspergillus awamori increases the cytochrome p-450 content of the liver microsomes of mice. J. Agric. Food Chem. 48:1367-1372. https://doi.org/10.1021/jf9905830
  20. Kwon, I. H., M. H. Kim, C. H. Yun, J. Y. Go, C. H. Lee, H. J. Lee, W. Phipek, and J. K. Ha. 2011. Effects of fermented soybean meal on immune response of weaned calves with experimentally induced lipopolysaccharide challenge. Asian Australas. J. Anim. Sci. 24:957-964. https://doi.org/10.5713/ajas.2011.10419
  21. Lena, D. G., E. Patroni, and G. B. Quaglia. 1997. Improving the nutritional value of wheat bran by a white rot fungus. Int. J. Food Sci. Technol. 32:513-519. https://doi.org/10.1111/j.1365-2621.1997.tb02125.x
  22. Li, D. F., J. L. Nelssen, P. G. Reddy, F. Blecha, J. D. Hancock, G. Allee, R. D. Goodband, and R. D. Klemm. 1990. Transient hypersensitivity to soybean meal in the early-weaned pig. J. Anim. Sci. 68:1790-1799. https://doi.org/10.2527/1990.6861790x
  23. Liener, I. E. 1994. Implications of antinutritional components in soybean foods. Crit. Rev. Food Sci. Nutr. 34:31-67. https://doi.org/10.1080/10408399409527649
  24. Liu, X., J. Feng, Z. Xu, Y. Lu, and Y. Liu. 2007. The effects of fermented soybean meal on growth performance and immune characteristics in weaned piglets. Turk. J. Vet. Anim. Sci. 31:341-345.
  25. Mathivanan, R., P. Selvaraj, and K. Nanjappan. 2006. Feeding of fermented soybean meal on broiler performance. Int. J. Poult. Sci. 5:868-872. https://doi.org/10.3923/ijps.2006.868.872
  26. Moktan, B., J. Saha, and P. K. Sarkar. 2008. Antioxidant activities of soybean as affected by Bacillus-fermentation to kinema. Food Res. Int. 41:586-593. https://doi.org/10.1016/j.foodres.2008.04.003
  27. Mukherjee, R., A. Dutta, and R. Chakraborty. 2015. Fermented soy products gaining popularity in poultry diets. All About Feed. 23:22-23.
  28. Pinto, G. A. S., S. G. F. Leite, S. C. Terzi, and C. Couri. 2001. Selection of tannase-producing Aspergillus niger strains. Braz. J. Microbiol. 32:24-26. https://doi.org/10.1590/S1517-83822001000100006
  29. Qin, G., E. R. ter Elst, M. W. Bosch, and A. F. B. van der Poel. 1996. Thermal processing of whole soya beans: Studies on the inactivation of antinutritional factors and effects on ileal digestibility in piglets. Anim. Feed Sci. Technol. 57:313-324. https://doi.org/10.1016/0377-8401(95)00863-2
  30. Rigo, E., J. L. Ninow, M. Di Luccio, J. V. Oliveira, A. E. Polloni, D. Remonatto, F. Arbter, R. Vardanega, D. de Oliveira, and H. Treichel. 2010. Lipase production by solid fermentation of soybean meal with different supplements. LWT-Food Sci. Technol. 43:1132-1137. https://doi.org/10.1016/j.lwt.2010.03.002
  31. Ross, P. R., S. Morgan, and C. Hill. 2002. Preservation and fermentation: past, present and future. Int. J. Food Microbiol. 79:3-16. https://doi.org/10.1016/S0168-1605(02)00174-5
  32. Singh, K., C. J. Linden, E. J. Johnson, and P. R. Tengerdy. 1990. Bioconversion of wheat straw to animal feed by solid substrate fermentation or ensiling. Indian J. Microbiol. 30:201-208.
  33. Song, Y. S., J. Frias, C. Martinez-Villaluenga, C. Vidal-Valdeverde, and E. G. de Mejia. 2008. Immunoreactivity reduction of soybean meal by fermentation, effect on amino acid composition and antigenicity of commercial soy products. Food Chem. 108:571-581. https://doi.org/10.1016/j.foodchem.2007.11.013
  34. Song, Y. S., V. G. Perez, J. E. Pettigrew, C. Martinez-Villaluenga, and E. G. de Mejia. 2010. Fermentation of soybean meal and its inclusion in diets for newly weaned pigs reduced diarrhea and measures of immunoreactivity in the plasma. Anim. Feed Sci. Technol. 159:41-49. https://doi.org/10.1016/j.anifeedsci.2010.04.011
  35. Teng, D., M. Gao, Y. Yang, B. Liu, Z. Tian, and J. Wang. 2012. Bio-modification of soybean meal with Bacillus subtilis or Aspergillus oryzae. Biocatal. Agric. Biotechnol. 1:32-38.
  36. Yamamoto, T., Y. Iwashita, H. Matsunari, T. Sugita, H. Furuita, A. Akimoto,K. Okamatsu, and N. Suzuki. 2010. Influence of fermentation conditions for soybean meal in a non-fish meal diet on the growth performance and physiological condition of Rainbow trout Oncorhynchus mykiss. Aquaculture 309:173-180. https://doi.org/10.1016/j.aquaculture.2010.09.021
  37. Yang, Y. X., Y. G. Kim, J. D. Lohakare, J. H. Yun, J. K. Lee, M. S. Kwon, J. K. Park, J. Y. Choi, and B. J. Chae. 2007. Comparative efficacy of different soy protein sources on growth performance, nutrient digestibility, and intestinal morphology in weaned pigs. Asian Australas. J. Anim. Sci. 20:775-783. https://doi.org/10.5713/ajas.2007.775
  38. Yuan, Y. C., Y. C. Lin, H. J. Yang, Y. Gong, S. Y. Gong, and D. H. Yu. 2013. Evaluation of fermented soybean meal in the practical diets for juvenile Chinese sucker, Myxocyprinus asiaticus. Aquac. Nutr. 19:74-83. https://doi.org/10.1111/j.1365-2095.2012.00939.x
  39. Zamora, R. G. and T. L. Veum. 1979. Whole soybeans fermented with Aspergillus oryzae and Rhizopus oligosporus for growing pigs. J. Anim. Sci. 48:63-68. https://doi.org/10.2527/jas1979.48163x

피인용 문헌

  1. 日粮中新鲜发酵豆粕对保育猪生长性能、氨气和颗粒物排放以及氮排泄的影响 vol.18, pp.12, 2017, https://doi.org/10.1631/jzus.B1700180
  2. 葡萄糖和赤霉酸对芥蓝芽菜中芥子油苷含量及其抗氧化能力的影响 vol.18, pp.12, 2017, https://doi.org/10.1631/jzus.B1700308
  3. 灵芝菌生物转化大豆异黄酮及其产物对结直肠癌细胞HTL-9 的体外凋亡诱导研究 vol.18, pp.12, 2017, https://doi.org/10.1631/jzus.B1700189
  4. Isolation of bacteria from fermented food and grass carp intestine and their efficiencies in improving nutrient value of soybean meal in solid state fermentation vol.9, pp.1, 2018, https://doi.org/10.1186/s40104-018-0245-1
  5. Microbiota in fermented feed and swine gut vol.102, pp.7, 2018, https://doi.org/10.1007/s00253-018-8829-4
  6. Effective reduction of antinutritional factors in soybean meal by acetic acid-catalyzed processing pp.01458892, 2018, https://doi.org/10.1111/jfpp.13775
  7. pp.08938849, 2018, https://doi.org/10.1111/jwas.12547
  8. Production of a water-soluble protein powder from anchovy and soybean meal by endogenous enzymatic hydrolysis and solid-state fermentation vol.43, pp.1, 2019, https://doi.org/10.1111/jfpp.13854
  9. Bioconversion of Agro-Industrial Waste to Value-Added Product Lycopene by Photosynthetic Bacterium Rhodopseudomonas faecalis and Its Carotenoid Composition pp.1877-265X, 2019, https://doi.org/10.1007/s12649-018-00571-z
  10. Impact of Feeding Fermented Wet Feed on Broiler Breeder Production Performance and Some Hatchability Traits vol.18, pp.3, 2019, https://doi.org/10.3923/ijps.2019.116.121
  11. The effect of diets containing raw and fermented faba beans on gut functioning and growth performance in young turkeys vol.27, pp.1, 2016, https://doi.org/10.22358/jafs/82779/2018
  12. Fermented corn-soybean meal elevated IGF1 levels in grower-finisher pigs1 vol.96, pp.12, 2016, https://doi.org/10.1093/jas/sky361
  13. Mixed fermentation of soybean meal by protease and probiotics and its effects on the growth performance and immune response in broilers vol.47, pp.1, 2016, https://doi.org/10.1080/09712119.2019.1637344
  14. Comparison of optimization approaches (response surface methodology and artificial neural network‐genetic algorithm) for a novel mixed culture approach in soybean meal fermentation vol.42, pp.5, 2019, https://doi.org/10.1111/jfpe.13124
  15. Development of Models for Fermented Mixed Feed Production for Swine vol.44, pp.3, 2016, https://doi.org/10.1007/s42853-019-00026-w
  16. Effects of Soybean Meal Fermented by Lactobacillus Species and Clostridium butyricum on Growth Performance, Diarrhea Incidence, and Fecal Bacteria in Weaning Piglets vol.19, pp.4, 2016, https://doi.org/10.2478/aoas-2019-0042
  17. Improved utilization of soybean meal through fermentation with commensal Shewanella sp. MR-7 in turbot (Scophthalmus maximus L.) vol.18, pp.None, 2019, https://doi.org/10.1186/s12934-019-1265-z
  18. Replacement of fish meal with two fermented soybean meals in diets for rainbow trout (Oncorhynchus mykiss) vol.26, pp.1, 2020, https://doi.org/10.1111/anu.12965
  19. Partial Substitution of Fermented Soybean Meal for Soybean Meal Influences the Carcass Traits and Meat Quality of Broiler Chickens vol.10, pp.2, 2020, https://doi.org/10.3390/ani10020225
  20. The Effect of Diet with Fermented Soybean Meal on Blood Metabolites and Redox Status of Chickens vol.20, pp.2, 2016, https://doi.org/10.2478/aoas-2020-0009
  21. Growth performance, haematological responses, intestinal microbiology and carcass traits of broiler chickens fed finisher diets containing two-stage fermented banana peel meal vol.52, pp.3, 2016, https://doi.org/10.1007/s11250-019-02147-y
  22. Application of fermentation strategy in aquafeed for sustainable aquaculture vol.12, pp.2, 2016, https://doi.org/10.1111/raq.12368
  23. Comparative aroma and taste profiles of oil furu (soybean curd) fermented with different mucor strains vol.85, pp.6, 2016, https://doi.org/10.1111/1750-3841.15100
  24. Isolation of a Highly Efficient Antigenic-Protein-Degrading Bacillus amyloliquefaciens and Assessment of Its Safety vol.10, pp.7, 2016, https://doi.org/10.3390/ani10071144
  25. Evaluation of an Industrial Soybean Byproduct for the Potential Development of a Probiotic Animal Feed Additive with Bacillus Species vol.12, pp.3, 2020, https://doi.org/10.1007/s12602-019-09619-5
  26. Diet supplemented with fermented okara improved growth performance, meat quality, and amino acid profiles in growing pigs vol.8, pp.10, 2020, https://doi.org/10.1002/fsn3.1857
  27. Growth Performance, Gut Environment and Physiology of the Gastrointestinal Tract in Weaned Piglets Fed a Diet Supplemented with Raw and Fermented Narrow-Leafed Lupine Seeds vol.10, pp.11, 2016, https://doi.org/10.3390/ani10112084
  28. Partial or complete replacement of fishmeal with fermented soybean meal on growth performance, fecal composition, and meat quality in broilers vol.62, pp.6, 2016, https://doi.org/10.5187/jast.2020.62.6.824
  29. Dietary fishmeal replacement with a mixed‐blend protein evokes sex‐specific differences on culture performance and physiological effects on Chinese mitten crab vol.26, pp.6, 2016, https://doi.org/10.1111/anu.13146
  30. Bacterial community dynamics reveal its key bacterium, Bacillus amyloliquefaciens ZB, involved in soybean meal fermentation for efficient water-soluble protein production vol.135, pp.None, 2021, https://doi.org/10.1016/j.lwt.2020.110068
  31. Soya bean‐based diets plus probiotics improve the profile of fatty acids, digestibility, intestinal microflora, growth performance and the innate immunity of beluga (Huso huso) vol.52, pp.1, 2021, https://doi.org/10.1111/are.14877
  32. A review of okara (soybean curd residue) utilization as animal feed: Nutritive value and animal performance aspects vol.92, pp.1, 2016, https://doi.org/10.1111/asj.13594
  33. Intestinal Health of Pigs Upon Weaning: Challenges and Nutritional Intervention vol.8, pp.None, 2016, https://doi.org/10.3389/fvets.2021.628258
  34. Efficient Strategy to Alleviate the Inhibitory Effect of Lignin-Derived Compounds for Enhanced Butanol Production vol.9, pp.3, 2021, https://doi.org/10.1021/acssuschemeng.0c06584
  35. Anaerobic Solid-State Fermentation of Soybean Meal With Bacillus sp. to Improve Nutritional Quality vol.8, pp.None, 2016, https://doi.org/10.3389/fnut.2021.706977
  36. Bacillus spp.-fermented mixture in goat starter diets on growth performance, blood, and carcass and gastrointestinal traits vol.50, pp.None, 2016, https://doi.org/10.37496/rbz5020200242
  37. Synergism of microorganisms and enzymes in solid-state fermentation of animal feed. A review vol.30, pp.1, 2016, https://doi.org/10.22358/jafs/133151/2021
  38. Bacillus subtilis and Enterococcus faecium co‐fermented feed regulates lactating sow's performance, immune status and gut microbiota vol.14, pp.2, 2016, https://doi.org/10.1111/1751-7915.13672
  39. Physiologically Active Molecules and Functional Properties of Soybeans in Human Health-A Current Perspective vol.22, pp.8, 2021, https://doi.org/10.3390/ijms22084054
  40. Measures Matter-Determining the True Nutri-Physiological Value of Feed Ingredients for Swine vol.11, pp.5, 2021, https://doi.org/10.3390/ani11051259
  41. Immunobiotic Feed Developed with Lactobacillus delbrueckii subsp. delbrueckii TUA4408L and the Soymilk By-Product Okara Improves Health and Growth Performance in Pigs vol.9, pp.5, 2016, https://doi.org/10.3390/microorganisms9050921
  42. Optimization of gamma‐aminobutyric acid production by Lactobacillus brevis PML1 in dairy sludge‐based culture medium through response surface methodology vol.9, pp.6, 2016, https://doi.org/10.1002/fsn3.2304
  43. Current Perspectives on the Physiological Activities of Fermented Soybean-Derived Cheonggukjang vol.22, pp.11, 2016, https://doi.org/10.3390/ijms22115746
  44. Effect of fermented corn–soybean meal on carcass and meat quality of grower‐finisher pigs vol.105, pp.4, 2016, https://doi.org/10.1111/jpn.13444
  45. Ethanol‐soluble components in soybean meal influence the digestive physiology, hepatic and intestinal morphologies, and growth performance of the marine fish pompano (Trachinotus blochii) vol.105, pp.4, 2016, https://doi.org/10.1111/jpn.13490
  46. A Review of the Effects and Production of Spore-Forming Probiotics for Poultry vol.11, pp.7, 2016, https://doi.org/10.3390/ani11071941
  47. The fermentation‐time dependent proteolysis profile and peptidomic analysis of fermented soybean curd vol.86, pp.8, 2016, https://doi.org/10.1111/1750-3841.15823
  48. Valorization of Lignocellulosic Wastes and Nutrient Recovery by Anoxygenic Photosynthetic Bacteria vol.12, pp.9, 2021, https://doi.org/10.1007/s12649-021-01351-y
  49. Co-Production of Protein Hydrolysates and 2,3-Butanediol from Brewer’s Spent Grain vol.9, pp.45, 2016, https://doi.org/10.1021/acssuschemeng.1c04162
  50. Tempe: A traditional fermented food of Indonesia and its health benefits vol.26, pp.None, 2016, https://doi.org/10.1016/j.ijgfs.2021.100413
  51. Optimization of Soybean Meal Fermentation for Aqua-Feed with Bacillus subtilis natto Using the Response Surface Methodology vol.7, pp.4, 2016, https://doi.org/10.3390/fermentation7040306
  52. Study on synergistic fermentation of bean dregs and soybean meal by multiple strains and proteases vol.154, pp.None, 2016, https://doi.org/10.1016/j.lwt.2021.112626
  53. The efficacy of soy isoflavones combined with soy protein on serum concentration of interleukin‐6 and tumour necrosis factor‐α among post‐menopausal women? A systematic review vol.49, pp.1, 2016, https://doi.org/10.1111/1440-1681.13586
  54. Effects of replacing fish meal with fermented soybean meal on the growth performance, intestinal microbiota, morphology and disease resistance of largemouth bass (Micropterus salmoides) vol.22, pp.None, 2022, https://doi.org/10.1016/j.aqrep.2021.100954
  55. Current perspectives on the anti-inflammatory potential of fermented soy foods vol.152, pp.None, 2016, https://doi.org/10.1016/j.foodres.2021.110922