DOI QR코드

DOI QR Code

Growth and Contents of Anthocyanins and Ascorbic Acid in Lettuce as Affected by Supplemental UV-A LED Irradiation with Different Light Quality and Photoperiod

상이한 광질 및 광주기 하에서 UV-A LED 부가 조사가 상추의 생장, 안토시아닌 및 아스코르빈산 함량에 미치는 영향

  • Kim, Yong Hyeon (Department of Bioindustrial Machinery Engineering, College of Agriculture & Life Sciences, Chonbuk National University) ;
  • Lee, Jae Su (Department of Bioindustrial Precision Machinery Engineering, Graduate School, Chonbuk National University)
  • 김용현 (전북대학교 농업생명과학대학 생물산업기계공학과) ;
  • 이재수 (전북대학교 대학원 생물산업정밀기계공학과)
  • Received : 2016.01.27
  • Accepted : 2016.06.22
  • Published : 2016.08.31

Abstract

The growth and contents of anthocyanins and ascorbic acid in lettuce(Lactuca sativa L., 'Jeokchima') as affected by supplemental UV-A LED irradiation under different light quality and photoperiod conditions were analyzed in this study. Five light qualities, namely B (blue LED), R (red LED), BUV (blue LED+UV-A LED), RUV (red LED+UV-A LED) and Control (white fluorescent lamps) with photoperiods of 12/12 hours (day/night), 16/8 hours, or 20/4 hours were provided to investigate the effects of light quality and photoperiod on the growth and accumulation of anthocyanins and ascorbic acid in lettuce leaves. As measured 28 days after transplanting, the number of leaves, leaf length, leaf width, leaf area, shoot fresh weight and dry weight of lettuce were significantly affected by light quality and photoperiod. The number of leaves, leaf length, leaf width, leaf area, shoot fresh weight and dry weight of lettuce grown under R treatment increased with increasing light period. By contrast, leaf development was inhibited, but chlorophyll content increased, under B treatment. Supplemental UV-A irradiation significantly decreased leaf length, leaf width, leaf area and shoot fresh weight. Anthocyanins in lettuce increased significantly with decreasing dark period under B treatment. A synergistic effect of supplemental UV-A LED irradiation on anthocyanins accumulation was found for lettuce leaves grown under R treatment but not B treatment. Ascorbic acid in lettuce was greatly affected by photoperiod. Ascorbic acid content at BUV and RUV treatments increased by 20-30% compared to without UV-A LED irradiation. From these results, it was concluded that growth and contents of anthocyanins and ascorbic acid in lettuce are significantly affected by supplemental UV-A LED irradiation. The results obtained in this study will be informative for efforts to improve the nutritional value of leafy vegetables grown in plant factories.

본 연구의 공시품종은 적치마 상추(Lactuca sativa L., cv. 'Jeokchima')로서 파종 후 본엽이 4매일 때 식물공장 내에 설치된 DFT 재배시스템에 정식하였다. 본 연구에서는 피크파장이 각각 450nm, 660nm, 365nm인 청색 LED, 적색 LED, UV-A LED를 이용하여 청색 LED (B), 적색 LED (R), 청색+UV-A LED (BUV), 적색+UV-A LED (RUV) 등 4개의 처리구를 설정하였고, 대조구로서 3파장 백색형광등을 사용하였다. 또한 광주기(명기/암기)에 따른 효과를 분석하고자 3수준(12/12h, 16/8h, 20/4h)의 광주기를 설정하였다. 식물공장 내 환경 조건은 기온(명기/암기) $22/18^{\circ}C$, 상대습도 70%, $CO_2$ 농도 $800{\mu}mol{\cdot}mol^{-1}$로 조절하였다. 한편 광합성유효광양자속과 UV-A LED의 조사강도는 각각 $230{\pm}11{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$, $80{\pm}3mW{\cdot}m^{-2}$이었다. 정식 후 28일째에 측정된 상추의 엽수, 엽장, 엽폭, 엽면적, 지상부 생체중 및 건물중은 본 연구에서 적용된 광질 및 광주기에 따라 유의차가 인정될 만큼 다르게 나타났다. 명기가 증가할수록 R 처리구에서의 엽수, 엽장, 엽폭, 엽면적, 지상부 생체중 및 건물중은 증가하였다. 한편 B 처리구에서는 잎의 신장이 억제되었으나, 엽록소함량은 증가하였다. UV-A의 부가 조사로 인하여 엽장, 엽폭, 엽면적 및 지상부 생체중이 감소하였다. 그러나 상추 잎의 안토시아닌 함량은 청색광 하에서 많이 증가하였으며, 명기가 짧아질수록 높게 축적되었다. 한편 UV-A의 부가 조사에 따른 안토시아닌 함량의 증가 효과는 R 처리구에서 높게 나타났다. 상추 잎의 아스코르빈산 함량은 광주기의 영향을 크게 받았다. 청색 또는 적색 LED에서 UV-A LED의 부가 조사에 따라 아스코르빈산 함량이 20-30% 증가하였다. 결론적으로 상추의 생장, 안토시아닌 및 아스코르빈산 함량에 미치는 UV-A LED의 조사 효과가 분명하게 나타났다. 향후 폐쇄형 시스템에서 엽채류의 영양성을 향상시키는 데 필요한 UV-A LED의 운용 조건을 제시하고자 할 때 본 연구 결과가 기초 자료로서 유용하게 활용될 것이다.

Keywords

References

  1. Basahi JM, Ismail IM, Hassan IA (2014) Effects of enhanced UV-B radiation and drought stress on photosynthrtic performance of lettuce (Lactuca sativa L. Romaine) plants. Anuual Research & Review in Biology 4:1739-1756. doi:10.9734/ARRB/2014/6638
  2. Brandt K, Giannini A, Lercari B (1995) Photomorphogenic responses to UV radiation III: a comparative study of UVB effects on anthocyanin and flavonoid accumulation in wild-type and aurea mutant of tomato (Lycopersicon esculentum Mill.). Photochem Photobiol 62:1081-1087. doi:10.1111/j.1751-1097.1995.tb02412.x
  3. Brazaityte A, Virsile A, Jankauskiene J, Sakalauskiene S, Samuoliene G, Sirtautas R, Novickovas A, Dabasinskas L, Miliauskiene J, et al (2015) Effect of supplemental UV-A irradiation in solid-state lighting on the growth and phytochemical content of microgreens. Int Agrophys 29:13-22. doi:10.1515/intag-2015-0004
  4. Britt AB, Chen JJ, Wykoff D, Mitchell D (1993) A UV-sensitive mutant of Arabidopsis defective in the repair of pyrimidine- pyrimidinone(6-4) dimers. Science 261:1571-1574. doi:10.1126/science 8372351
  5. Carvalho IS, Cavaco T, Carvalho LM, Duque P (2010) Effect of photoperiod on flavonoid pathway activity in sweetpotato (Ipomoea batatas (L.) Lam.) leaves. Food Chem 118:384-390. doi:10.1016/j.foodchem.2009.05.005
  6. Erkan M, Wang SY, Wang CY (2008) Effect of UV treatment on antioxidant capacity, antioxidant enzyme activity and decay in strawberry fruit. Postharvest Biol Technol 48:163-171. doi:10.1016/j.postharvbio.2007.09.028
  7. Frohnmeyer H, Staiger D (2003) Ultraviolet-B radiation mediated responses in plants. Balancing damage and protection. Plant Physiol 133:1420-1428. doi:10.1104/pp.103.030049
  8. Fuleki T, Francis FJ (1968) Quantitative methods for anthocyanins. 1. Extration and determination of total anthocyanins in cranberries. J Food Sci 33:72-77. doi:10.1111/j.1365-2621.1968.tb00887.x
  9. Giliberto L, Perrotta G, Pallara P, Weller JL, Fraser PD, Bramley PM, Fiore A, Tavazza M, Giuliano G (2005) Manipulation of the blue light photoreceptor cryptochrome 2 in tomato affects vegetative development, flowering time, and fruit antioxidant content. Plant Physiol 137:199-208. doi:10.1104/pp.104.051987
  10. Goins GD, Yorio NC, Sanwo MM, Brown CS (1997) Photomorphogenesis, photosynthesis, and seed yield of wheat plants grown under red light-emitting diodes (LEDs) with and without supplemental blue lighting. J Exp Bot 48:1407-1413. doi:10.1093/ jxb/48.7.1407
  11. Jansen MAK, Gaba V, Greenberg BM (1998) Higher plants and UV-B radiation: balancing damage, repair and acclimation. Trends Plant Sci 3:131-135. doi:10.1016/S1360-1385(98)01215-1
  12. Johkan M, Shoji K, Goto F, Hashida S, Yoshihara T (2010) Blue light-emitting diode light irradiation of seedlings improves seedling quality and growth after transplanting in red leaf lettuce. HortScience 45:1809-1814
  13. Kim YH, Park ES, Kim JM (2006) Seedling quality of potato 'Superior' seedlings as affected by plug cell size and photoperiod. Proceedings Korean J Bio-environ Control 15:308-312
  14. Kong JM, Chia LS, Goh NK, Chia TF, Brouillard R (2003) Analysis and biological activities of anthocyanins. Phytochemistry 64:923-933. doi:10.1016/S0031-9422(03)00438-2
  15. Korea Food and Drug Administration (2008) Food standard codex. Korean Food Industry Association, Seoul, Korea
  16. Lee DW, Gould KS (2002) Anthocyanins in leaves and other vegetative organs: An introduction. Adv Bot Res 37:1-16. doi:10.1016/ S0065-2296(02)37040-X
  17. Lee HI, Kim YH (2013) Utilization efficiencies of electric energy and photosynthetically active radiation of lettuce grown under red LED, blue LED and fluorescent lamps with different photoperiods. J Biosystems Eng 38:279-286. doi:10.5307/JBE.2013.38.4.279
  18. Lee JS, Kim YH (2014) Growth and anthocyanins of lettuce grown under red or blue light-emitting diodes with distinct peak wavelength. Korean J Hortic Sci Technol 32:330-339. doi:10.7235/hort.2014.13152
  19. Lee MJ, Son JE, Oh MM (2014) Growth and phenolic compounds of Lactuca sativa L. grown in a closed-type plant production system with UV-A, -B, or -C lamp. J Sci Food Agric 94:197-204. doi:10.1002/jsfa.6227
  20. Lercari B, Sodi F, Sbrana C (1989) Comparison of Photomorphogenic Responses to UV Light in Red and White Cabbage (Brassica oleracea L.). Plant Physiol 90:345-350. doi:10.1104/pp.90.1.345
  21. Li H, Tang C, Xu Z, Liu X, Han X (2012) Effects of different light sources on the growth of nonheading chinese cabbage (Brassica campestris L.). J Agric Sci 4:262-273. doi:10.5539/jas.v4n4p262
  22. Li Q, Kubota C (2009) Effects of supplemental light quality on growth and phytochemicals of baby leaf lettuce. Environ Exp Bot 67:59- 64. doi:10.1016/j.envexpbot.2009.06.011
  23. Lila MA (2004) Anthocyanins and human health: An in vitro investigative approach. J Biomed Biotechnol 2004:306-313. doi:10.1155/ S111072430440401X
  24. Mahdavian K, Ghorbanli M, Kalantari KM (2008) The Effects of ultraviolet radiation on the contents of chlorophyll, flavonoid, anthocyanin and proline in Capsicum annuum L. Turk J Bot 32:25-33
  25. Moan J (2001) Visible light and UV radiation. In D Brune, R Helborg, BRR Persson, R Paakkonen, eds, Radiation at home, outdoors and in the workplace. Scandinavian Science Publishers, Oslo, Norway
  26. Ninu L, Ahmad M, Miarelli C, Cashmore AR, Giuliano G (1999) Cryptochrome 1 controls tomato development in response to blue light. Plant J 18:551-556. doi:10.1046/j.1365-313X.1999.00466.x
  27. Oren-Shamir M (2009) Does anthocyanin degradation play a significant role in determining pigment concentration in plants? Plant Sci 177:310-316. doi:10.1016/j.plantsci.2009.06.015
  28. Park JE, Park YG, Jeong BR, Hwang SJ (2012) Growth and anthocyanin content of lettuce as affected by artificial light source and photoperiod in a closed-type plant production system. Korean J Hortic Sci Technol 30:673-679. doi:10.7235/hort.2012.12020
  29. Piazza P, Procissi A, Jenkins IG, Tonelli C (2002) Members of the C1/pl1 regulatory gene family mediate the response of maize aleurone and mesocotyl to different light qualities and cytokinins. Plant Physiol 128:1077-1086. doi:10.1104/pp.010799
  30. Reyes LF, Miller JC, Cisneros-Zevallos L (2004) Environmental conditions influence the content and yield of anthocyanins and total phenolic in purple- and red-flesh potatoes during tuber development. Am J Potato Res 81:187-193. doi:10.1007/BF02871748
  31. Samuoliene G, Sirtautas R, Brazaityte A, Virš ile A, Duchovskis P (2012) Supplementary red LED lighting and the changes in phytochemical content of two baby leaf lettuce varieties during three seasons. J Food Agric Environ 10:701-706
  32. Scott, LC (1999) Environmental significance of anthocyanins in plant stress responses. Photochem Photobiol 70:1-9. doi:10.1111/ j.1751-1097.1999.tb01944.x
  33. Son KH, Park JH, Kim DI, Oh MM (2012) Leaf shape index, growth, and phytochemicals in two leaf lettuce cultivars grown under monochromatic light-emitting diodes. Korean J Hortic Sci Technol 30:664-672. doi:10.7235/hort.2012.12063
  34. Steindal ALH, Molmann J, Bengtsson GB, Johansen TJ (2013) Influence of daylength and temperature on the content of health-related compounds in Broccoli (Brassica oleracea L. var. italica ). Agric Food Chem 61:10779-10786. doi:10.1021/jf403466r
  35. Suesslin C, Frohnmeyer H (2003) An Arabidopsis mutant defective in UV-B light-mediated responses. Plant J 33:591-601. doi:10.1046/j.1365-313X.2003.01649.x
  36. Tsormpatsidis E, Henbest RGC, Davis FJ, Battey NH, Hadley P, Wagstaffe A (2008) UV irradiance as a major influence on growth, development and secondary products of commercial importance in Lollo Rosso lettuce 'Revolution' grown under polyethylene films. Environ Exp Bot 63:232-239. doi:10.1016/j.envexpbot.2007.12.002
  37. Uleberg E, Rohloff J, Jaakola L, Trost K, Junttila O, Haggman H (2012) Effects of temperature and photoperiod on yield and chemical composition of northern and southern clones of bilberry (Vaccinium myrtillus L.). J Agric Food Chem 60:10406-10414. doi:10.1021/jf302924m
  38. Wang Y, Zhou B, Sun M, Li Y, Kawabata S (2012) UV-A light induces anthocyanin biosynthesis in a manner distinct from synergistic blue + UV-B light and UV-A/blue light responses in different parts of the hypocotyls in turnip seedlings. Plant Cell Physiol 53:1470-1480. doi:10.1093/pcp/pcs088
  39. Wenke L, Qichang Y (2012) Effects of day-night supplemental UV-A on growth, photosynthetic pigments and antioxidant system of pea seedlings in glasshouse. Afr J Biotechnol 11:14786-14791. doi:10.5897/AJB12.2020
  40. Zoratti L, Karppinen K, Escobar AL, Haggman H, Jaakol L (2014) Light-controlled flavonoid biosynthesis in fruits. Frontires in Plant Science 5:534. doi:10.3389/fpls.2014.00534

Cited by

  1. QTL Analysis of the Content of Some Bioactive Compounds in Brassica rapa L. Grown under Light Culture Conditions vol.7, pp.12, 2016, https://doi.org/10.3390/horticulturae7120583