DOI QR코드

DOI QR Code

Comparative Thermodynamic Analysis of Organic Rankine Cycle and Ammonia-Water Rankine Cycle

유기랭킨사이클과 암모니아-물 랭킨사이클의 열역학적 성능의 비교 해석

  • KIM, KYOUNG HOON (Department of Mechanical Engineering, Kumoh National Institute of Technology) ;
  • KIM, MAN-HOE (School of Mechanical Engineering, Kyungpook National University)
  • 김경훈 (금오공과대학교 기계공학과) ;
  • 김만회 (경북대학교 기계공학부)
  • Received : 2016.09.19
  • Accepted : 2016.10.30
  • Published : 2016.10.30

Abstract

In this paper a comparative thermodynamics analysis is carried out for organic Rankine cycle (ORC) and ammonia-water Rankine cycle (AWRC) utilizing low-grade heat sources. Effects of the working fluid, ammonia concentration, and turbine inlet pressure are systematically investigated on the system performance such as mass flow rate, pressure ratio, turbine-exit volume flow, and net power production as well as the thermal efficiency. Results show that ORC with a proper working fluid shows higher thermal efficiency than AWRC, however, AWRC shows lower mass flow rate of working fluid and lower pressure ratio of expander than ORC.

Keywords

References

  1. S. Ogriseck, "Integration of Kalina cycle in a combined heat and power plant, a case study", Applied Ther. Eng., Vol. 29, 2009, pp. 2843-2848. https://doi.org/10.1016/j.applthermaleng.2009.02.006
  2. J. Bao and L. Zhao, "A review of working fluid and expander selections for organic Rankine cycle", Renew. Sustain. Energy Rev., Vol. 24, 2013, pp. 325-342. https://doi.org/10.1016/j.rser.2013.03.040
  3. V. A. Prisyazhniuk, "Alternative trends in development of thermal power plant", Applied Therm. Eng., Vol. 28, 2008, pp. 190-194. https://doi.org/10.1016/j.applthermaleng.2007.03.025
  4. P. Roy, M. Desilets, N. Galanis, H. Nesreddine, and E. Cayer, "Thermo-dynamic analysis of a power cycle using a low-temperature source and a binary $NH_3-H_2O$ mixture as working fluid", Int. J. Thermal Sci., Vol. 49, 2010, pp. 48-58. https://doi.org/10.1016/j.ijthermalsci.2009.05.014
  5. P. A. Lolos and E. D. Rogdakis, "A Kalina power cycle driven by renewable energy sources", Energy, Vol. 34, 2009, pp. 457-464. https://doi.org/10.1016/j.energy.2008.12.011
  6. C. Zamfirescu and I. Dincer, "Thermo-dynamic analysis of a novel ammonia-water trilateral Rankine cycle", Thermochim. Acta, Vol. 477, 2008, pp. 7-15. https://doi.org/10.1016/j.tca.2008.08.002
  7. P. Roy, M. Desilets, N. Galanis, H. Nesreddine, and E. Cayer, "Thermodynamic analysis of a power cycle using a low-temperature source and a binary $NH_3-H_2O$ mixture as working fluid", Int. J. Therm. Sci., Vol. 49, 2010, pp. 48-58. https://doi.org/10.1016/j.ijthermalsci.2009.05.014
  8. W. R. Wagar, C. Zamfirescu, and I. Dincer, "Thermodynamic performance assessment of an ammonia-water Rankine cycle for power and heat production", Energy Convers. Manag., Vol. 51, 2010, pp. 2501-2509. https://doi.org/10.1016/j.enconman.2010.05.014
  9. K. H. Kim, C. H. Han, and K. Kim, "Effects of ammonia concentration on the thermodynamic performances of ammonia-water based power cycles," Thermochim. Acta, Vol. 530, 2012, pp. 7-16. https://doi.org/10.1016/j.tca.2011.11.028
  10. K. H. Kim, C. H. Han, and K. Kim, "Comparative exergy analysis of ammonia-water based Rankine cycles with and without regeneration," Int. J. Exergy, Vol. 12, 2013, pp. 344-361. https://doi.org/10.1504/IJEX.2013.054117
  11. K. H. Kim, H. J. Ko, and K. Kim, "Assessment of pinch point characteristics in heat exchangers and condensers of ammonia-water based power cycles", Appl. Energy, Vol. 113, 2014, pp. 970-981. https://doi.org/10.1016/j.apenergy.2013.08.055
  12. K. H. Kim and K. C. Kim, "Thermodynamic performance analysis of a combined power cycle using low grade heat source and LNG cold energy", Appl. Therm. Eng., Vol. 70, 2014, pp. 50-60. https://doi.org/10.1016/j.applthermaleng.2014.04.064
  13. T. Yang, G. J. Chen, and T. M. Gou, "Extension of the Wong-Sandler mixing rule to the threeparameter Patel-Teja equation of state: Application up to the near-critical region," Chem. Eng. J., Vol. 67, 1997, pp. 27-36. https://doi.org/10.1016/S1385-8947(97)00012-0
  14. J. Gao, L. D. Li, S. G. Ru, "Vapor-liquid equilibria calculation for asymmetric systems using Patel-Teja equation of state with a new mixing rule," Fluid Phase Equilibrium, Vol. 224, 2004, pp. 213-219. https://doi.org/10.1016/j.fluid.2004.05.007
  15. C. L. Yaws, "Chemical Properties Handbook," McGraw-Hill, New York, NY, USA, 1999.
  16. F. Xu, D.Y. Goswami, "Thermodynamic properties of ammonia-water mixtures for power cycle application", Energy, Vol. 24, 1999, pp. 525-536. https://doi.org/10.1016/S0360-5442(99)00007-9