DOI QR코드

DOI QR Code

동위원소를 이용한 하수 내 지하수 및 우수 함량 산출: 전주 덕진공원 유역 사례

Calculation of Rainwater and Groundwater Fraction in Sewerage: A Case Study in Deokjin Park, Jeonju

  • Choi, Seung-Hyun (Department of Environmental Engineering, Kunsan National University) ;
  • Kim, Kangjoo (Department of Environmental Engineering, Kunsan National University) ;
  • Moon, Sang-Ho (Korea Institute of Geoscience and Mineral Resources)
  • 투고 : 2016.09.30
  • 심사 : 2016.10.31
  • 발행 : 2016.10.28

초록

하수관거에 지하수가 침투하고 우수가 유입(I/I)되게 되면 하수의 양이 크게 늘어나 하수처리장의 부하가 가중되고, 하수의 처리효율도 크게 감소되기 때문에, 하수 중의 I/I를 알아내는 것은 매우 중요하다. 본 연구는 산소 및 수소 동위원소를 이용한 I/I 측정가능성 검토를 목적으로 수행되었으며, 이를 위하여 전주시 덕진공원 유역 내 관정 지하수 및 수로수, 상수도 등에 대하여 동위윈소적 조사를 수행하였다. 본 연구를 통하여 전주지역의 상수도는 전주에서 내륙으로 약 40 km 떨어진 고지대에 위치한 용담댐을 수원으로 하기 때문에 지역 강우와는 뚜렷이 다른 동위원소적 특성을 보이고, 시간에 따른 조성의 변화도 거의 없음을 알게 되었다. 하수는 기본적으로 상수도에서 발생하므로, 상수도와 지역강우를 양극단으로 하여 하수로 내 지역강우의 함량을 계산할 수 있다. 이러한 방법으로 덕진공원 유역 내하수로 1개 지점에서 지역강우의 함량을 계산한 결과, 강우가 시기에 따라 하수의 50%에서 90%를 차지하는 것으로 확인되었다. 이러한 계산결과는 오염농도가 높지 않은 하수의 수질을 통하여도 잘 뒷받침된다. 같은 방법으로 계산된 지하수내 상수도의 함량도 약 46%나 되었으며, 이는 상수도의 누수가 중요한 지하수원이 되고 있음을 지시하는 것이다. 이러한 동위원소 조성을 갖는 지하수는 하수로에 유입되어도 하수의 동위원소에는 크게 영향을 주지 않기 때문에 실제로 하수로에 유입되는 우수와 지하수의 량은 계산 결과보다 훨씬 클 것으로 예상된다.

It is well known that the inflow of rainwater and the infiltration of groundwater to sewerage (I/I) increase the sewage and burden sewage treatment plants and lower their treatment efficiency. Therefore, it is important to estimate the amount of I/I. In this study, well groundwaters, public water supplies (PWSs), and sewage and rainwater channels were investigated to check whether oxygen and deuterium isotopes could be used as a tool for I/I estimation. This study shows that the isotopic composition of PWS in Jeonju area is very consistent over time and distinctly lighter than the circulating local rainwater (CLR) because it is supplied from Yongdam Dam, which is located about 40 km inland to the east in the mountainous area. Considering the fact that sewage mostly originates from the PWS, we could calculate the amounts of CLR in the sewerage from a monitoring station using unaffected rainwater and tap water as mixing end members. The calculation revealed that the CLR fraction ranged from 50% to 90% depending on observation time. This is well supported by the dilute natures of the sewages at the station. The fraction of PWS in investigated well waters were about 46%, indicating that leaking of PWS is very serious and is an important groundwater source in the study area. Since the infiltration of such groundwater may not alter the isotopic composition of sewage significantly, the actual I/I would be much greater than the calculated ones.

키워드

참고문헌

  1. Barry, R.G. and Chorley, R.J. (1987) Atmosphere, Weather and Climate. 5th ed., Methuen, p.460.
  2. Clark, I.D., Fritz, P., Michel, F.A. and Souther, J.G. (1982) Isotope hydrogeology and geothermometry of the Mount Meager geothermal area. Canadian Journal of earth Sciences, v.19, p.1454-1473. https://doi.org/10.1139/e82-126
  3. Clark, I.D. and Fritz, P. (1997) Environmental Isotopes in Hydrogeology. Lewis Publishers, NewYork, p.328.
  4. Choi, G.W., Kim, G.H. and Jun, Y.H. (2002) A study for estimation of infiltration/inflow in pipes. Journal of the Korean Society of Civil Engineers, v.4, p.3373-3376.
  5. Choi, S.H., Kim, S.H., Lee, J.W., Kim, K. and Oh, C.W. (2015a) A study on obtaining waters to restore the water-ecosystem of Deokjin Pond in Jeonju: New paradigm for restoration of urban reservoirs. Korea Society of Economic and Environmental Geology, v.48(6), p.467-475. https://doi.org/10.9719/EEG.2015.48.6.467
  6. Choi, S.H., Kim, S.H. and Kim, K. (2015b) Assessment for the possibility of water-ecosystem restoration applying LID techniques in the Deokjin Park area, Jeonju City. Korea Society of Economic and Environmental Geology, v.48(6), p.477-490. https://doi.org/10.9719/EEG.2015.48.6.477
  7. Fritz, P., Cherry, J., Weyer, K.U. and Sklash, M. (1976) Storm runoff analyses using environmental isotopes and major ions. Workshop Proceedings, IAEA, Vienna: 110-130.
  8. Hong, M.S. and Kim, Y.W. (1969) Geological map of Korea (Samrye) 1:50,000. Korea Institute of Geoscience And Mineral Resources, p.32.
  9. Kim, K. (1999) Geochemical evolution of groundwater along a flowpath determined from oxygen isotope analysis in a carbonate free, silicate aquifer. Geosciences Journal, v.3(4), p.191-200. https://doi.org/10.1007/BF02910490
  10. Kim, K., Koo, M.H., Moon, S.H., Yum, B.W. and Lee, K.S. (2005) Hydrochemistry of groundwaters in a spa area of Korea: an implication for water quality degradation by intensive pumping. Hydrological Processes, v.19 p.493-505. https://doi.org/10.1002/hyp.5551
  11. Kim, K., Oh, C.W., Kim, S.H. and Choi, S.H. (2014) A survey of water sources and flow rates for restoration of water-ecosystem in the Deokjin Park Watershed, Jeonju City.
  12. King, James J. (1995) The Environmental Dictionary. p.335.
  13. Kracht, O., Gresch, M. and Gujer, W. (2007) A stable isotope approach for the quantification of sewer infiltration. Environmental Science and Technology, v.41, p.5839-5845. https://doi.org/10.1021/es062960c
  14. Schilperoort, R.P.S. (2004) Natural water isotopes for the quantification of infiltration and inflow in sewer systems. Master Thesis. Delft University of Technology, p.151.