DOI QR코드

DOI QR Code

Antioxidant and Immunological Activities of Sparassis crispa Fermented with Meyerozyma guilliermondii FM

Meyerozyma guilliermondii FM을 이용한 꽃송이버섯 발효물의 항산화 효과 및 면역 활성

  • Received : 2016.06.13
  • Accepted : 2016.08.09
  • Published : 2016.10.31

Abstract

The effects of Sparassis crispa extracts fermented with isolated strain from S. crispa on antioxidant and immunological activities were determined. S. crispa extracts fermented with Meyerozyma guilliermondii FM showed significantly higher total phenol contents and DPPH radical scavenging activities compared to those fermented with lactic acid bacteria. In methotrexate-induced immunosuppressed rats, reduced levels of tumor necrosis factor (TNF)-${\alpha}$, interleukin (IL)-2, and immunoglobulin E (IgE) and increased levels of IL-10 were detected in S. crispa extract injected groups regardless of fermentation. We confirmed that rats treated with S. crispa fermented with M. guilliermondii FM showed higher blood leukocyte contents compared to other treatments. These results suggest that M. guilliermondii FM has high potential as a starter culture for fermentation of S. crispa extracts with increased antioxidant and immunological activities.

꽃송이버섯에서 분리 선발한 Meyerozyma guilliermondii FM을 이용하여 꽃송이버섯 발효물을 제조하고 항산화 활성 및 면역조절 효과를 조사하였다. 꽃송이버섯 발효물 제조 시 M. guilliermondii FM은 유산균과 비슷한 생육능력을 보였으며, 5일째에는 오히려 높은 값을 나타내었다. 발효 후 총페놀 함량과 DPPH 라디칼 소거능은 유산균보다 유의적으로 높은 값을 나타내었다. 면역저하가 유발된 rat에서 비장 무게는 면역을 저하시킨 대조군보다 꽃송이버섯 비발효 추출물과 발효물 투여군에서 모두 유의적으로 증가하였다. 또한, 꽃송이버섯 발효물 투여에 따라 TNF-${\alpha}$, IL-2, IgE의 수치는 대조군보다 감소하였으며, IL-10은 증가하였으나 꽃송이버섯 비발효 추출물과 발효물 투여 사이의 유의적인 차이는 없었다. M. guilliermondii FM을 이용한 꽃송이버섯 발효물을 투여한 실험구는 혈액 내 백혈구 함량이 대조구 및 다른 처리구에 비하여 가장 높은 수치를 나타내었다.

Keywords

References

  1. Han DS, Jeon SW, Kim HJ. 2009. Study on the antioxidant and anticancer effects of extract of stamens of Nelumbo nucifera and kaempferol. Kor J Herbology 24: 23-33.
  2. Lee SY, Lee YG, Byeon SE, Han S, Choi SS, Kim AR, Lee J, Lee SJ, Hong S, Cho JY. 2010. Mitogen activated protein kinases are prime signalling enzymes in nitric oxide production induced by soluble ${\beta}$-glucan from Sparassis crispa. Arch Pharm Res 33: 1753-1760. https://doi.org/10.1007/s12272-010-1107-3
  3. Hong JS, Kim YH, Kim MK, Kim YS, Sohn HS. 1989. Contents of free amino acids and total amino acids in Agaricus bisporus, Pleurotus ostreatus and Lentinus edodes. Korean J Food Sci Technol 21: 58-62.
  4. Lee SK, Yoo YJ, Kim CS. 1989. Studies on the chemical components in Ganoderma lucidum. Korean J Food Sci Technol 21: 890-894.
  5. Lee YS, Kim JB, Shin SR, Kim NW. 2006. Analysis of nutritional components of Lepista nuda. Korean J Food Preserv 13: 375-381.
  6. Ohno N, Furukawa M, Miura NN, Adachi Y, Motoi M, Yadomae T. 2001. Antitumor ${\beta}$-glucan from the cultured fruit body of Agaricus blazei. Biol Pharm Bull 24: 820-828. https://doi.org/10.1248/bpb.24.820
  7. Akramiene D, Kondrotas A, Didziapetriene J, Kevelaitis E. 2006. Effects of ${\beta}$-glucans on the immune system. Medicina (Kaunas) 43: 597-606.
  8. Xu XM, Jun JY, Jeong IH. 2007. A study on the antioxidant activity of Hae-Songi mushroom (Hypsizigus marmoreus) hot water extracts. J Korean Soc Food Sci Nutr 36: 1351-1357. https://doi.org/10.3746/jkfn.2007.36.11.1351
  9. Kim DH, Park SR, Debnath T, Hasnat MA, Pervin M, Lim BO. 2013. Evaluation of the antioxidant activity and anti-inflammatory effect of Hericium erinaceus water extracts. Korean J Med Crop Sci 21: 112-117. https://doi.org/10.7783/KJMCS.2013.21.2.112
  10. Ohno N, Miura NN, Nakajima M, Yadomae T. 2000. Antitumor 1,3-${\beta}$-glucan from cultured fruit body of Sparassis crispa. Biol Pharm Bull 23: 866-872. https://doi.org/10.1248/bpb.23.866
  11. Kim MY, Seguin P, Ahn JK, Kim JJ, Chun SC, Kim EH, Seo SH, Kang EY, Kim SL, Park YJ, Ro HM, Chung IM. 2008. Phenolic compound concentration and antioxidant activities of edible and medicinal mushrooms from Korea. J Agric Food Chem 56: 7265-7270. https://doi.org/10.1021/jf8008553
  12. Kim IK, Yun YC, Shin YC, Yoo J. 2013. Effect of Sparassis crispa extracts on immune cell activation and tumor growth inhibition. J Life Sci 23: 984-988. https://doi.org/10.5352/JLS.2013.23.8.984
  13. Choi WS, Shin PG, Bok YY, Jun NH, Kim GD. 2013. Antiinflammatory effects of Sparassis crispa extracts. J Mushroom 11: 46-51. https://doi.org/10.14480/JM.2013.11.1.046
  14. Lim CW, Kang KK, Yoo YB, Kim BH, Bae SH. 2012. Dietary fiber and ${\beta}$-glucan contents of Sparassis crispa fruit fermented with Lactobacillus brevis and Monascus pilosus. J Korean Soc Food Sci Nutr 41: 1740-1746. https://doi.org/10.3746/jkfn.2012.41.12.1740
  15. Yoon TJ, Yang WS, Park SM, Jung HY, Lee AN, Jung JH, Kang TB, Yoo YC, Kim JB. 2009. In vivo toxicity and immunoadjuvant activity of Korean mistletoe (Viscum album coloratum) extract fermented with Lactobacillus. Korean J Food Sci Technol 41: 560-565.
  16. Kim KH, Yun YS, Chun SY, Yook HS. 2012. Antioxidant and antibacterial activities of grape pomace fermented by various microorganisms. J Korean Soc Food Sci Nutr 41: 1049-1056. https://doi.org/10.3746/jkfn.2012.41.8.1049
  17. Chung BH, Seo HS, Kim HS, Woo SH, Cho YG. 2010. Antioxidant and anticancer effects of fermentation vinegars with Phellinus linteus, Inonotus obliquus, and Pleurotus ostreatus. Korean J Med Crop Sci 18: 113-117.
  18. Jo HG, Choi MH, Shin HJ. 2015. Preparation of fermentation broth of Sparassis latifolia containing soluble ${\beta}$-glucan using four Lactobacillus species. J Mushroom 13: 50-55. https://doi.org/10.14480/JM.2015.13.1.50
  19. Jeong DW, Lee JH. 2014. Safety assessment of starters for traditional Korean fermented foods. Korean J Microbiol Biotechnol 42: 1-10. https://doi.org/10.4014/kjmb.1401.01005
  20. Folin O, Denis W. 1912. On phosphotungstic-phosphomolybdic compounds as color reagents. J Biol Chem 12: 239-243.
  21. Blois MS. 1958. Antioxidant determinations by the use of a stable free radical. Nature 181: 1199-1200. https://doi.org/10.1038/1811199a0
  22. Kim NM, Lee JS. 2003. Effect of fermentation periods on the qualities and physiological functionalities of the mushroom fermentation broth. Korean J Mycol 31: 28-33. https://doi.org/10.4489/KJM.2003.31.1.028
  23. Kim EJ, Yoo KH, Kim YS, Seok SJ, Kim JH. 2015. Biological activities of wild Sparassis crispa extracts. Kor J Mycol 43: 40-46. https://doi.org/10.4489/KJM.2015.43.1.40
  24. Shin HJ, Oh DS, Lee HD, Kang HB, Lee CW, Cha WS. 2007. Analysis of mineral, amino acid and vitamin contents of fruiting body of Sparassis crispa. J Life Sci 17: 1290-1293. https://doi.org/10.5352/JLS.2007.17.9.1290
  25. Yang HS, Choi YJ, Oh HH, Moon JS, Jung HK, Kim KJ, Choi BS, Lee JW, Huh CK. 2014. Antioxidative activity of mushroom water extracts fermented by lactic acid bacteria. J Korean Soc Food Sci Nutr 43: 80-85. https://doi.org/10.3746/jkfn.2014.43.1.080
  26. Mertin J, Meade CJ, Hunt R, Sheena J. 1977. Importance of the spleen for the immuno-inhibitory action of linoleic acid in mice. Int Arch Allergy Appl Immunol 53: 469-473. https://doi.org/10.1159/000231785
  27. Bin-Hafeez B, Ahmad I, Haque R, Raisuddin S. 2001. Protective effect of Cassia occidentalis L. on cyclophosphamideinduced suppression of humoral immunity in mice. J Ethnopharmacol 75: 13-18. https://doi.org/10.1016/S0378-8741(00)00382-2
  28. Ryu HS, Kim KO, Kim HS. 2009. Effects of plant water extract Codonopsis lanceolatae on mouse immune cell activation ex vivo. Korean J Nutr 42: 207-212. https://doi.org/10.4163/kjn.2009.42.3.207
  29. Cho CW, Rhee YK, Kim YC, Han CJ, Shin KS, Hong HD. 2013. Immunomodulatory effects of polysaccharides derived from persimmon leaves on cyclophosphamide-induced immunosuppressed mice. Korean J Food Sci Technol 45: 636-641. https://doi.org/10.9721/KJFST.2013.45.5.636
  30. Chen Y, Tang J, Wang X, Sun F, Liang S. 2012. An immunostimulatory polysaccharide (SCP-IIa) from the fruit of Schisandra chinensis (Turcz.) Baill. Int J Biol Macromol 50: 844-848. https://doi.org/10.1016/j.ijbiomac.2011.11.015
  31. Balkwill FR, Naylor MS, Malik S. 1990. Tumor necrosis factor as an anticancer agent. Eur J Cancer Clin Oncol 26: 641-644. https://doi.org/10.1016/0277-5379(90)90097-D
  32. Lee SC, Liu W, Dickson DW, Brosnan CF, Berman JW. 1998. Cytokine production by human fetal microglia and astrocytes. Differential induction by lipopolysaccharide and IL-1 beta. J Immunol 150: 2659-2667.
  33. Cheung CY, Poon LL, Lau AS, Luk W, Lau YL, Shortridge KF, Gordon S, Guan Y, Peiris JS. 2002. Induction of proinflammatory cytokines in human macrophages by influenza A (H5N1) viruses: a mechanism for the unusual severity of human disease?. Lancet 360: 1831-1837. https://doi.org/10.1016/S0140-6736(02)11772-7
  34. Thomas CM, Hong T, van Pijkeren JP, Hemarajata P, Trinh DV, Hu W, Britton RA, Kalkum M, Versalovic J. 2012. Histamine derived from probiotic Lactobacillus reuteri suppresses TNF via modulation of PKA and ERK signaling. PLoS One 7: e31951. https://doi.org/10.1371/journal.pone.0031951
  35. Grewe M, Bruijnzeel-Koomen CA, Schopf E, Thepen T, Langeveld-Wildschut AG, Ruzicka T, Krutmann J. 1998. A role for Th1 and Th2 cells in the immunopathogenesis of atopic dermatitis. Immunol Today 19: 359-361. https://doi.org/10.1016/S0167-5699(98)01285-7
  36. Uehara M, Kimura C. 1993. Descendant family history of atopic dermatitis. Acta Derm Venereol 73: 62-63.
  37. Horan RF, Schneider LC, Sheffer AL. 1992. Allergic skin disorders and mastocytosis. J Am Med Assoc 268: 2858-2868. https://doi.org/10.1001/jama.1992.03490200110012
  38. Lee IH, Lee SH, Lee IS, Park YK, Chung DK, Choue R. 2008. Effects of probiotic extracts of kimchi on immune function in NC/Nga mice. Korean J Food Sci Technol 40: 82-87.
  39. Mazzoni A, Young HA, Spitzer JH, Visintin A, Segal DM. 2001. Histamine regulates cytokine production in maturing dendritic cells, resulting in altered T cell polarization. J Clin Invest 108: 1865-1873. https://doi.org/10.1172/JCI200113930
  40. Pelliccia C, Antonielli L, Corte L, Bagnetti A, Fatichenti F, Cardinali G. 2011. Preliminary prospection of the yeast biodiversity on apple and pear surfaces from Northern Italy orchards. Ann Microbiol 61: 965-972. https://doi.org/10.1007/s13213-011-0220-y
  41. Chanprasartsuk OO, Prakitchaiwattana C, Sanguandeekul R, Fleet GH. 2010. Autochthonous yeasts associated with mature pineapple fruits, freshly crushed juice and their ferments; and the chemical changes during natural fermentation. Bioresour Technol 101: 7500-7509. https://doi.org/10.1016/j.biortech.2010.04.047
  42. Burkholder PR. 1943. Synthesis of riboflavin by a yeast. Proc Natl Acad Sci U S A 29: 166-172. https://doi.org/10.1073/pnas.29.6.166
  43. Protchenko OV, Boretsky YuR, Romanyuk TM, Fedorovych DV. 2000. Oversynthesis of riboflavin by yeast Pichia guilliermondii in response to oxidative stress. Ukr Biokhim Zh 72: 19-23.
  44. Tanner FW Jr, Vojnovich C, VAN Lanen JM. 1945. Riboflavin production by Candida species. Science 101: 180-181. https://doi.org/10.1126/science.101.2616.180
  45. Kodama K, Suzuki M, Toyosawa T, Araki S. 2005. Inhibitory mechanisms of highly purified vitamin B2 on the productions of proinflammatory cytokine and NO in endotoxin- induced shock in mice. Life Sci 78: 134-139. https://doi.org/10.1016/j.lfs.2005.04.037
  46. Bertollo CM, Oliveira AC, Rocha LT, Costa KA, Nascimento EB Jr, Coelho MM. 2006. Characterization of the antinociceptive and anti-inflammatory activities of riboflavin in different experimental models. Eur J Pharmacol 547: 184-191. https://doi.org/10.1016/j.ejphar.2006.07.045
  47. Osame S, Araki S, Kimura M. 1995. Effects of vitamin $B_2$ on neutrophil functions in cattle. J Vet Med Sci 57: 493-495. https://doi.org/10.1292/jvms.57.493
  48. Kimura M, Suzuki M, Araki S. 1996. In vitro and in vivo effects of riboflavin sodium phosphate on the phagocytic activity of peritoneal macrophages in mice. Anim Sci Technol 67: 368-373.

Cited by

  1. GC–MS based metabolomics study of fermented stipe of Sparassis crispa vol.27, pp.4, 2018, https://doi.org/10.1007/s10068-018-0329-x
  2. Effects of Sparassis crispa in Medical Therapeutics: A Systematic Review and Meta-Analysis of Randomized Controlled Trials vol.19, pp.5, 2018, https://doi.org/10.3390/ijms19051487