DOI QR코드

DOI QR Code

Novel Thin Film Composite Forward Osmosis Membranes of Highly Enhanced Water Flux with Interlayer Polysiloxane Between Polysulfone and Polyamide

폴리술폰과 폴리아미드 경계층에 형성된 폴리실록산을 이용한 정삼투 복합 박막의 유량 향상

  • Jung, Boram (Department of Environmental Engineering, Dong-Eui University) ;
  • Kim, Nowon (Department of Environmental Engineering, Dong-Eui University)
  • Received : 2016.10.21
  • Accepted : 2016.10.28
  • Published : 2016.10.31

Abstract

In this work, novel thin film composite (TFC) forward osmosis (FO) membranes are developed via interfacial polymerization on the polysulfone (PS) substrate, using TEOS as the a sol-gel reagent to form hydrophilic interlayer polymer between PS and polyamide (PA). The PS substrate was cast on a very thin polyester nonwoven to reduce membrane resistance. With the incorporation of TEOS (tetraethoxy silane) polymer in the interface between PS and PA, the formed TFC FO membrane exhibits better hydrophilicity and improved water flux, and therefore superior membrane performance. By changing the polymerization sequence of PA interfacial polymerization and TEOS sol-gel condensation, the surface properties and performance of FO membranes are changed significantly. The permeability of FO membranes were estimated using the bench-scale FO test equipment. The distribution of the polysiloxane on composite membrane and morphology are also studied with FE-SEM and EDAX. The PS_PA_TEOS membrane showed highly enhanced water flux (79.2 LMH) but reverse salt flux (RSF) value (7.10 GMH) also increased. However, the flux of PS_TEOS_PA membrane increased moderately (54.1 LMH) without increasing RSF value (1.60 GMH) compare with PS_PA membrane.

본 연구에서는 폴리술폰층 표면에 계면 중합 반응을 시켜 정삼투 복합 박막을 얻는 방법에 있어서, 지지층인 폴리술폰층과 활성층인 폴리아미드층 사이에 테트라에톡시실란 단량체의 졸-젤 반응을 통하여 고분자를 합성함으로써 친수성 경계층을 형성시키는 방법에 관한 제조법을 제시하였다. 폴리술폰층은 막 저항을 최소화하기 위하여 아주 얇은 부직포를 사용하였다. 테트라에톡시실란의 졸-젤 반응으로 형성된 고분자 경계층이 폴리술폰층과 폴리아미드층 사이에 형성된 정삼투 분리막은 친수화도, 유량 향상 등 정삼투 분리막 투과 특성에 있어 향상된 결과를 보여 주었다. 폴리아미드 계면 중합과 테트라에톡시실란 졸-젤 중합의 순서를 변화시킴으로써 표면 구조 특성 및 정삼투 투과 특성이 크게 달라짐을 볼 수 있었다. 정삼투막의 투과 특성은 실험실 용량의 정삼투 평가 장치를 통하여, 정삼투 분리막 내 폴리실록산의 분포와 구조는 FE-SEM과 EDAX를 이용하여 조사하였다. PS_PA_TEOS막의 경우 유량에 있어 79.2 LMH로 현격한 증가가 있었으나 염의 역확산 속도 역시 7.10 GMH로 증가하였다. 반면 PS_TEOS_PA막의 경우 PS_PA막에 비해 염의 역확산 속도는 1.60 GMH로 유지되면서 유량이 54.1 LMH로 증가하는 현상을 확인할 수 있었다.

Keywords

References

  1. N. Y. Yip, A. Tiraferri, W. A. Phillip, J. D. Schiffman, L. A. Hoover, Y. C. Kim, and M. Elimelech, "Thin-film composite pressure retarded osmosis membranes for sustainable power generation from salinity gradients", Environ. Sci. Technol., 45, 4360 (2011). https://doi.org/10.1021/es104325z
  2. K. L. Lee, R. W. Baker, and H. K. Lonsdale, "Membranes for power generation by pressure-retarded osmosis", J. Membr. Sci., 8, 141 (1981). https://doi.org/10.1016/S0376-7388(00)82088-8
  3. T. Cath, A. Childress, and M. Elimelech, "Forward osmosis : principles, application, and recent developments", J. Membr. Sci., 281, 70 (2006). https://doi.org/10.1016/j.memsci.2006.05.048
  4. K. Lutchmiah, E. R. Cornelissen, D. J. H. Harmsen, J. W. Post, K. Roest, K. Lampi, H. Ramaekers, and L. C. Rietveld, "Water recovery from sewage using forward osmosis", Water Sci. Technol., 64, 1443 (2011). https://doi.org/10.2166/wst.2011.773
  5. A. Achilli, T. Y. Cath, E. A. Marchand, and A. E. Childress, "The forward osmosis membrane bioreactor: a low fouling alternative to MBR processes", Desalination, 239, 10 (2009). https://doi.org/10.1016/j.desal.2008.02.022
  6. O. Kessler and C. D. Moody, "Drinking water from sea water by forward osmosis", Desalination, 18, 297 (1976). https://doi.org/10.1016/S0011-9164(00)84119-3
  7. S. Hong, S. Lee, J. H. Kim, J. H. Kim, and Y. Ju, "Evolution of RO process for green future", KIC News, 14, 9 (2011).
  8. A. Achilli, T. Cath, and A. Childress, "Power generation with retarded osmosis : An experimental and theoretical investigation", J. Membr. Sci., 343, pp. 42 (2009). https://doi.org/10.1016/j.memsci.2009.07.006
  9. R. Babu, N. K. Rastogi, and K. S. M. S. Raghavarao, "Effect of process parameters on transmembrane flux during direct osmosis", J. Membr. Sci., 280, 185 (2006). https://doi.org/10.1016/j.memsci.2006.01.018
  10. E. Kravath and J. A. Davis, "Desalination of seawater by direct osmosis", Desalination, 16, 151 (1975). https://doi.org/10.1016/S0011-9164(00)82089-5
  11. D. Xiao, C. Y. Tang, J. Zhang, W. C. L. Lay, R. Wang, and A. G. Fane, "Modeling salt accumulation in osmotic membrane bioreactor simplications for FO membrane selection and system operation", J. Membr. Sci., 366, 314 (2011). https://doi.org/10.1016/j.memsci.2010.10.023
  12. G. Gray, J. McCutcheon, and M. Elimelech, "Internal concentration polarization in forward osmosis : role of membrane orientation", Desalination, 197, 1 (2006). https://doi.org/10.1016/j.desal.2006.02.003
  13. J. R. McCutcheon, R. L. McGinnis, and M. Elimelech, "Desalination by a novel ammonia-carbon dioxide forward osmosis process: influence of draw and feed solution concentrations on process performance", J. Membr. Sci., 278, 114 (2006). https://doi.org/10.1016/j.memsci.2005.10.048
  14. J. R. McCutcheon, R. L. McGinnis, and M. Elimelech, "A novel ammonia-carbon dioxide forward (direct) osmosis desalination process", Desalination, 174, 1 (2005). https://doi.org/10.1016/j.desal.2004.11.002
  15. G. D. Mehta and S. Loeb, "Internal polarization in the porous substructure of a semi-permeable membrane under pressure-retarded osmosis", J. Membr. Sci., 4, 261 (1978). https://doi.org/10.1016/S0376-7388(00)83301-3
  16. D. Stillman, L. Krupp, and Y.-H. La, "Mesh-reinforced thin film composite membranes for forward osmosis applications: The structure-performance relationship", J. Membr. Sci., 4, 261 (1978). https://doi.org/10.1016/S0376-7388(00)83301-3
  17. A. Yamaguchi, F. Uejo, T. Yoda1, T. Uchida, Y. Tanamura, T. Yamashita, and N. Teramae, "Self-assembly of a silica-surfactant nanocomposite in a porous alumina membrane", Nature Materials, 3, 337 (2004). https://doi.org/10.1038/nmat1107
  18. H. Ahn, J. Kim, and Y. Kwon, "Preparation of cellulose acetate membrane and its evaluation as a forward osmosis membrane", Membr. J., 24, 136 (2014). https://doi.org/10.14579/MEMBRANE_JOURNAL.2014.24.2.136
  19. S. H. Ahn, I. C. Kim, D. H. Song, J. Jegal, Y. Kwon, and H. W. Rhee, "Pore structure and separation Properties of thin film composite forward osmosis membrane with different support structures", Membr, J., 23, 251 (2013).
  20. B. Jung, J. H. Kim, B. S. Kim, Y. I. Park, D. H. Song, and I. C. Kim, "Effect of support membrane property on performance of forward osmosis membrane", Membr. J., 20, 235 (2010).