DOI QR코드

DOI QR Code

Effect of Precursor Alumina Particle Size on Pore Structure and Gas Permeation Properties of Tubular α-alumina Support Prepared by Slip Casting Process

초기 알루미나 분체의 입자크기가 주입성형법에 의해 제조된 튜브형 α-알루미나 지지체의 기공구조 및 기체 투과 특성에 미치는 영향

  • Yang, Eun-Mok (Graduate School of Energy Science and Technology (GEST), Chungnam National University) ;
  • Lee, Hye Ryeon (Graduate School of Energy Science and Technology (GEST), Chungnam National University) ;
  • Cho, Churl-Hee (Graduate School of Energy Science and Technology (GEST), Chungnam National University)
  • 양은목 (충남대학교 에너지과학기술대학원 에너지과학기술학과) ;
  • 이혜련 (충남대학교 에너지과학기술대학원 에너지과학기술학과) ;
  • 조철희 (충남대학교 에너지과학기술대학원 에너지과학기술학과)
  • Received : 2016.10.05
  • Accepted : 2016.10.21
  • Published : 2016.10.31

Abstract

The present paper reports the effect of precursor alumina particle size on pore structure and single gas permeation properties of tubular ${\alpha}$-alumina supports, prepared by a combined process of slip casting and sintering. Pore diameter of as-prepared ${\alpha}$-alumina support was highly dependent on precursor ${\alpha}$-alumina particle size. Although, increase in the precursor particle size increases the pore diameter, but the porosity of ${\alpha}$-alumina support mainly control by sintering temperature. Sintering studies reveal that as sintering temperature increased porosity of support decreased. Single gas permeance results indicate that permence is proportional to the square of pore diameter and linearly to porosity. These dependencies revealed that gas permeation trough as-prepared ${\alpha}$-alumina support was governed by viscous flow mechanism. The present announces that precursor ${\alpha}$-alumina particle size and sintering temperature are key parameters to control gas permeantion properties of ${\alpha}$-alumina supports.

본 연구에서는 입자크기가 다른 3가지 ${\alpha}$-알루미나 분체로부터 주입성형법과 소결법을 혼용하여 튜브형 ${\alpha}$-알루미나 지지체를 제조하여 초기 ${\alpha}$-알루미나 분체의 입자크기와 소결 온도가 지지체의 기공구조와 기체투과 특성에 미치는 영향을 고찰하였다. 평균입경이 0.2, 0.5, $1.7{\mu}m$${\alpha}$-알루미나 분체를 사용했을 시 제조된 ${\alpha}$-알루미나 지지체는 각각 약 80, 130, 200 nm의 평균 기공경을 가졌으며 평균 기공경은 소결 온도 보다는 초기 알루미나 분체의 입자크기에 의존하였다. 모든 시편에서 소결 온도가 증가할수록 지지체의 부피 밀도는 증가하였고 겉보기 기공률은 감소하였다. He, $N_2$, $O_2$, $CO_2$에 대하여 $30^{\circ}C$에서 단일기체 투과 특성을 평가한 결과, 기체 투과도는 기공경 제곱에 비례하여 증가하였고 기공률이 증가함에 따라서 직선적으로 증가하였다. 이를 토대로 제조된 ${\alpha}$-알루미나 지지체의 기체 투과는 점성유동(viscous flow)에 의하여 이루어지며, ${\alpha}$-알루미나 지지체의 기체 투과 특성은 초기 ${\alpha}$-알루미나 분체의 입자크기와 소결온도를 제어함으로써 조절될 수 있음을 확인할 수 있었다.

Keywords

References

  1. K. Chan and A. Brownstein, "Ceramic membranes: growth prospects and opportunities", Am. Ceram. Soc. Bull., 70, 703 (1991).
  2. R. Donelson, G. Paul, F. Ciacchi, and S. Badwal, "Permeation and strength characteristics of macroporous supports for gas separation produced by co-sintering mixtures of ${\alpha}-alumina$ and kaolin", J. Membr. Sci., 463, 126 (2014). https://doi.org/10.1016/j.memsci.2014.03.043
  3. H. Lonsdale, "The growth of membrane technology", J. Membr. Sci., 10, 81 (1982). https://doi.org/10.1016/S0376-7388(00)81408-8
  4. I. M. Kwon, I. H. Song, Y. J. Park, J. W. Lee, H. S. Yun, and H. D. Kim, "The synthesis and pore property of hydrogen membranes derived from polysilazane as inorganic polymer", J. Korean Ceram. Soc., 46, 462 (2009). https://doi.org/10.4191/KCERS.2009.46.5.462
  5. S. H. Han, H. B. Park, and Y. M. Lee, "[special] The latest trends in polymer membrane for gas separation", Polymer Science and Technology., 19, 284 (2008).
  6. K. T. Kim and S. H. Hyun, "Porous ceramic composite membranes and applications", CERAMIST., 4, 40 (2001).
  7. H. Verweij, "Inorganic membranes", Curr. Opin. Chem. Eng., 1, 156 (2012). https://doi.org/10.1016/j.coche.2012.03.006
  8. J. Caro, M. Noack, P. Kolsch, and R. Schafer, "Zeolite membranes-state of their development and perspective", Micro. Meso. Mater., 38, 3 (2000). https://doi.org/10.1016/S1387-1811(99)00295-4
  9. R. Abedini and A. Nezhadmoghadam, "Application of membrane in gas separation processes: its suitability and mechanisms", Pet. Coal., 52, 69 (2010).
  10. A. J. Burggraaf, "Important characteristics of inorganic membranes", Int. J. Membr. Sci. Technol., 4, 21 (1996).
  11. X. Tan and K. Li, "Inorganic Membrane Reactors: Fundamentals and Applications, John Wiley and Sons, New York, NY (2015).
  12. R. Bhave, "Inorganic Membranes Synthesis, Characteristics and Applications: Synthesis, characteristics, and applications", Springer Science & Business Media, New York, NY (2012).
  13. S. H. Hyun, "Present status and preparation technology of ceramic membranes", Membr. J., 3, 1 (1993).
  14. E. O. Kim, "Application of ceramic membrane", Membr. J., 3, 12 (1993).
  15. A. Markovic, D. Stoltenberg, D. Enke, E. U. Schlunder, and A. Seidel-Morgenstern, "Gas permeation through porous glass membranes: Part I. Mesoporous glasses-effect of pore diameter and surface properties", J. Membr. Sci., 336, 17 (2009). https://doi.org/10.1016/j.memsci.2009.02.031
  16. P. Auerkari, "Mechanical and physical properties of engineering alumina ceramics", VTT Manufacturing Technology, Finland (1996).
  17. A. Damle, S. Gangwal, and V. Venkataraman, "Carbon membranes for gas separation: developmental studies", Gas Sep. Purif., 8, 137 (1994). https://doi.org/10.1016/0950-4214(94)80024-3
  18. A. Markovic, D. Stoltenberg, D. Enke, E. U. Schlunder, and A. Seidel-Morgenstern, "Gas permeation through porous glass membranes: Part I. Mesoporous glasses-effect of pore diameter and surface properties", J. Membr. Sci., 336, 17 (2009). https://doi.org/10.1016/j.memsci.2009.02.031
  19. Y. Dong, B. Lin, K. Xie, S. Wang, H. Ding, D. Fang, X. Liu, and G. Meng, "Cost-effective macro-porous mullite-corundum ceramic membrane supports derived from the industrial grade powder", J. Alloys Compd., 477, 350 (2009). https://doi.org/10.1016/j.jallcom.2008.09.139
  20. Z. Ismagilov, R. Shkrabina, N. Koryabkina, A. Kirchanov, H. Veringa, and P. Pex, "Porous alumina as a support for catalysts and membranes. Preparation and study", React. Kinet. Catal. Lett., 60, 225 (1997). https://doi.org/10.1007/BF02475683
  21. X. Gao, M. R. Bonilla, J. C. D. da Costa, and S. K. Bhatia, "The transport of gases in macroporous ${\alpha}-alumina$ supports", J. Membr. Sci., 409, 24 (2012).
  22. A. A. Marc, "Development of Ceramic Composite Membranes for Gas Separation: I. Coating Characteristics of Nanoparticulate $SiO_{2}$ Sols", J. Korean Ceram. Soc., 29, 496 (1992).
  23. M. N. "Rahaman, Sintering of ceramics", CRC press, Florida, Fl (2007).
  24. H. R. Lee, B. Seo, and Y. J. Choi, "Control of nano-structure of ceramic membrane and its application", Membr. J., 22, 77 (2012).
  25. R. Uhlhorn, M. Huis In't Veld, K. Keizer, and A. Burggraaf, "High permselectivities of microporous silica-modified${\gamma}-alumina$ membranes", J. Mater. Sci. Lett., 8, 1135 (1989). https://doi.org/10.1007/BF01730047
  26. P. Uchytil, "Gas permeation in ceramic membranes Part I. Theory and testing of ceramic membranes", J. Membr. Sci., 97, 139 (1994). https://doi.org/10.1016/0376-7388(94)00156-S
  27. D. L. Meixner and P. N. Dyer, "Characterization of the transport properties of microporous inorganic membranes", J. Membr. Sci., 140, 81 (1998). https://doi.org/10.1016/S0376-7388(97)00268-8