DOI QR코드

DOI QR Code

Component analysis and immuno-stimulating activity of Sparassis crispa stipe

꽃송이버섯 기부의 성분분석 및 면역활성

  • Received : 2016.05.31
  • Accepted : 2016.07.05
  • Published : 2016.10.31

Abstract

This study was carried out to investigate the component and immunoregulatory effects of Sparassis crispa stipe. Herein, S. crispa was divided into the pileus and stipe to compare their ingredients (${\beta}-glucan$), antioxidant activity (in vitro), and the immunoregulatory function (cytokines, leukocytes, and spleen weight). The ${\beta}-glucan$ content in each part showed about 1.8 times higher content in the stipe than that in the pileus. The stipe also showed a higher total phenol content and antioxidant activity than the pileus. The cytokines $TNF-{\alpha}$, IL-2, and IL-10 have adjusted in the S. crispa extract-injected groups. In addition, the number of leukocytes was also significantly elevated in the rats administered with the S. crispa stipe extract. These results suggest that the stipe of S. crispa has great potential as an ingredient in functional foods.

본 연구에서는 꽃송이버섯 자실체와 기부의 항산화 활성, 베타글루칸 함량 및 면역 활성을 비교하였다. DPPH 라디컬제거능 실험결과 꽃송이버섯 기부의 항산화 활성이 자실체에 비해 약 2.3배 높은 활성을 보였다. 건조 중량 기준 꽃송이버섯 추출물의 베타글루칸 함량 또한 기부가 23.7 g/100 g로 자실체의 함량 13.8 g/100 g보다 유의하게 높은 것으로 측정되었다. 면역 저하에 대한 꽃송이버섯 추출물의 투여는 $TNF-{\alpha}$, IL-2, IL-10, IgE 함량에서 유의미한 결과를 도출하였지만, 자실체와 기부의 효과는 유의적인 차이가 없었다. 혈액 내의 백혈구 함량 및 비장의 무게는 꽃송이버섯 자실체보다 꽃송이버섯 기부 추출물을 경구 투여한 실험군에서 효과적이었다.

Keywords

References

  1. Chang WL, Kang KK, Yoo YB, Kim BH, Bae SH. Dietary fiber and $\beta$-glucan contents of Sparassis crispa fruit fermented with Lactobacillus brevis and Monascus pilosus. J. Korean Soc. Food Sci. Nutr. 41: 1740-1746 (2012) https://doi.org/10.3746/jkfn.2012.41.12.1740
  2. Oh DS, Park JM, Park H, Ka KH, Chun WJ. Site characteristics and vegetation structure of the habitat of cauliflower mushroom (Sparassis crispa). Kor. J. Mycol. 37: 33-40 (2009) https://doi.org/10.4489/KJM.2009.37.1.033
  3. Qi Y, Zhao X, Lim YI, Park KY. Antioxidant and anticancer effects of edible and medicinal mushrooms. J. Korean Soc. Food Sci. Nutr. 42: 655-662 (2013) https://doi.org/10.3746/jkfn.2013.42.5.655
  4. Cheong JC, Park JS, Hong IP, Seok SJ, Jhune CS, Lee CJ. Cultural characteristics of cauliflower mushroom, Sparassis crispa. Kor. J. Mycol. 36: 16-21 (2008) https://doi.org/10.4489/KJM.2008.36.1.016
  5. Ohno N, Miura NN, Nakajima M, Yadomae T. Antitumor 1,3-$\beta$- glucan from cultured fruit body of Sparassis crispa. Biol. Pharm. Bull. 23: 866-872 (2000) https://doi.org/10.1248/bpb.23.866
  6. Kim IK, Yun YC, Shin YC, Yoo JY. Effect of Sparassis crispa extracts on immune cell activation and tumor growth inhibition. J. Life Sci. 23: 984-988 (2013) https://doi.org/10.5352/JLS.2013.23.8.984
  7. Choi MH, Han HK, Lee YJ, Jo HG, Shin HJ. In vitro anti-cancer activity of hydrophobic fractions of Sparassis latifolia extract using AGS, A529, and HepG2 cell lines. J. Mushrooms 12: 304- 310 (2014) https://doi.org/10.14480/JM.2014.12.4.304
  8. Choi WS, Shin PG, Bok YY, Jun NH, Kim GD. Anti-inflammatory effects of Sparassis crispa extracts. J. Mushroom Sci. Prod. 11: 46-51 (2013) https://doi.org/10.14480/JM.2013.11.1.046
  9. Lee MA, Park JK, Um MH, Jeon JW, Lee JM, Park YK. Lipolytic effect of Sparassis crispa extracts in differentiated 3T3-L1 cells and high fat diet-induced obese mice. J. Korean Soc. Food Sci. Nutr. 41: 1708-1715 (2012) https://doi.org/10.3746/jkfn.2012.41.12.1708
  10. Lee MR, Hou JG, Begum S, Wang YB, Oh DS, Wi AJ, Yoon BS, Sung CK. Anti-obesity effects of Sparassis crispa on high-fat diet-induced obese mice. J. Life Sci. 24: 952-958 (2014) https://doi.org/10.5352/JLS.2014.24.9.952
  11. Kim MC, Kim JS, Heo MS. Antibacterial, antioxidant and antitumor activities of mushroom mycelium mixed culture extracts. Korean J. Biotechnol. Bioeng. 23: 158-163 (2008)
  12. Shim JO, Son SG, Yoon SO, Lee YS, Lee TS, Lee SS, Lee KD, Lee MW. The optimal factors for the mycelial growth of Sparassis crispa. Kor. J. Mycol. 26: 39-46 (1998)
  13. AOAC. Official Method of Analysis of AOAC Intl. 15th ed. Method 954.01. Assosiation of Official Analytical Chemists, Arlington, VA, USA. (1990)
  14. Gutfinger T. Polyphenols in olive oils. JAOCS. 58: 966-968 (1981) https://doi.org/10.1007/BF02659771
  15. Blois MS. Antioxidant determinations by the use of a stable free radical. Nature 181: 1199-1200 (1958) https://doi.org/10.1038/1811199a0
  16. Xu XM, Jun JY, Jeong IH. A study on the antioxidant activity of hae-songi mushroom (Hypsizigus marmoreus) hot water extracts. J. Korean Soc. Food Sci. Nutr. 36: 1351-1357 (2007) https://doi.org/10.3746/jkfn.2007.36.11.1351
  17. Hong MH, Jin YJ, Pyo YH. Antioxidant properties and ubiquinone contents in different parts of several commercial mushrooms. J. Korean Soc. Food Sci. Nutr. 41: 1235-1241 (2012) https://doi.org/10.3746/jkfn.2012.41.9.1235
  18. Barros L, Ferreira MJ, Ferreira ICFR, Baptista P. Total phenols, ascorbic acid, $\beta$-carotene and lycopene in portuguese wild edible mushrooms and their antioxidant activities. Food Chem. 103: 413-419 (2007) https://doi.org/10.1016/j.foodchem.2006.07.038
  19. Nowacka N, Nowak R, Drozd M, Olech M, Los R, Malm A. Analysis of phenolic constituents, antiradical and antimicrobial activity of edible mushrooms growing wild in poland. LWT-Food Sci. Technol. 59: 689-694 (2014) https://doi.org/10.1016/j.lwt.2014.05.041
  20. Liang CH, Tsai SY, Huang SJ, Liang ZC, Mau JL. Taste quality and antioxidant properties of medicinal mushrooms Phellinus linteus and Sparassis crispa mycelia. Int. J. Med. Mushrooms 12: 141-150 (2010) https://doi.org/10.1615/IntJMedMushr.v12.i2.40
  21. Gan CH, Nurul Amira B, Asmah R. Antioxidant analysis of different types of edible mushrooms (Agaricus bisporous and Agaricus brasiliensis). IFRJ. 20: 1095-1102 (2013)
  22. Kim HJ, Ahn MS, Kim GH, Kang MH. Antioxidative and antimicrobial activities of Pleurotus eryngii extracts prepared from different aerial part. Korean J. Food Sci. Technol. 38: 799-804 (2006)
  23. Wang SJ, Kim HS, Wi AJ, Yoon BS, Park WS, Park HH, Oh DS. Optimal medium composition of cauliflower mushroom (Sparassis latifolia) cultivation using douglas fir wood chip and comparison of the $\beta$-glucan contents of the fruiting body. J. Korean Wood Sci. Technol. 42: 428-438 (2014) https://doi.org/10.5658/WOOD.2014.42.4.428
  24. Kofuji K, Aoki A, Tsubaki K, Konishi M, Isobe T, Murata Y. Antioxidant activity of $\beta$-glucan. ISRN. Pharmaceutics 5: 125864 (2012)
  25. Wu Z, Ming J, Gao R, Wang Y, Liang Q, Yu H, Zhao G. Characterization and antioxidant activity of the complex of tea polyphenols and oat $\beta$-glucan. J. Agr. Food Chem. 59: 10737- 10746 (2011) https://doi.org/10.1021/jf202722w
  26. Lee SY, Lee YG, Byeon SE, Han SR, Choi SS, Kim AR, Lee JH, Lee SJ, Hong SY, Cho JY. Mitogen activated protein kinases are prime signalling enzymes in nitric oxide production induced by soluble $\beta$-glucan from Sparassis crispa. Arch. Pharm. Res. 33: 1753-1760 (2010) https://doi.org/10.1007/s12272-010-1107-3
  27. Harada T, Miura NN, Adachi Y, Nakajima M, Yadomae T, Ohno N. IFN-$\gamma$ induction by SCG, 1,3-$\beta$-D-glucan from Sparassis crispa, in DBA/2 mice in vitro. J. Interf. Cytok. Res. 22: 1227- 1239 (2002) https://doi.org/10.1089/10799900260475759
  28. Kim HS, Kim JY, Ryu HS, Park HG, Kim YO, Kang JS, Kim HM, Hong JT, Kim YS, Han SB. Induction of dendritic cell maturation by $\beta$-glucan isolated from Sparassis crispa. Int. Immunopharmacol. 10: 1284-1294 (2010) https://doi.org/10.1016/j.intimp.2010.07.012
  29. Park HG, Shim YY, Choi SO, Park WM.New method development for nanoparticle extraction of water-soluble $\beta$-(1$\rightarrow$3)-d-glucan from edible mushrooms, Sparassis crispa and Phellinus linteus. J. Agr. Food Chem. 57: 2147-2154 (2009) https://doi.org/10.1021/jf802940x
  30. Balkwill FR, Maylor MS, Malik S. Tumor necrosis factor as an anticancer agent. Eur. J. Cancer 26: 641-644 (1990) https://doi.org/10.1016/0277-5379(90)90097-D
  31. Chao CC, Hu S, Molitor TW, Brosnan CF, Berman JW. Cytokine prodution by human fetal microglia and astrocytes. J. Immunol. 150: 2659-2660 (1998)
  32. Mathiak G, Grass G, Herzmann T, Luebke T, Cu-Zetina C, Boehm SA. Capase-1-inhibitor ac-YVAD-cmk reduces LPSlethality in rats without affecting haematology or cytokine responses. Br. J. Pharmacol. 131: 383-386 (2000) https://doi.org/10.1038/sj.bjp.0703629
  33. Song EJ, Lee CJ, Kim KBWR, Jung JY, Kwak JH, Choi MK, Kim MJ, Ahn DH. Effect of Ecklonia cava water extracts on inhibition of IgE in food allergy mouse model. J. Korean Soc. Food Sci. Nutr. 39: 1776-1782 (2010) https://doi.org/10.3746/jkfn.2010.39.12.1776
  34. Fiorentino DF, Zlotnik A, Vieira P, Mosmann TR, Howard M, Moore KW, O'Garra A. IL-10 acts on the antigen-presenting cell to inhibit cytokine production by Th1 cells. J. Immunol. 146: 3444-3451 (1991)
  35. Shibata A, Hida TH, Ishibashi KI, Miura NN, Adachi Y, Ohno N. Disruption of actin cytoskeleton enhanced cytokine synthesis of splenocytes stimulated with $\beta$-glucan from the cauliflower medicinal mushroom, Sparassis crispa Wulf.:Fr. (higher basidiomycetes) in vitro. Int. J. Med. Mushrooms 14: 257-269 (2012) https://doi.org/10.1615/IntJMedMushr.v14.i3.30
  36. Harada T, Miura N, Adachi Y, Nakajima M, Yadomae T, Ohno N. Effect of SCG, 1,3-$\beta$-D-glucan from Sparassis crispa on the hematopoietic response in cyclophosphamide induced leukopenic mice. Biol. Pharm. Bull. 25: 931-939 (2002) https://doi.org/10.1248/bpb.25.931
  37. Mertin J, Meade CJ, Hunt R. Importance of the spleen for the immun inhibitory action of linoleic acid in mice. Int. Arch. Aller. A. Imm. 53: 469-473 (1977) https://doi.org/10.1159/000231785
  38. Hafeez BB, Ahmad I, Haque R, Raisuddin S. Protective effect of Cassia occidentalis L. on cyclophosphamide-induced suppression of humoral immunity in mice. J. Ethnopharmacol. 75: 13-18 (2001) https://doi.org/10.1016/S0378-8741(00)00382-2
  39. Ryu HS, Kim KO, Kim HS. Effects of plant water extract Codonopsis Lanceolatae on mouse immune cell activation ex vivo. Korean J. Nutr. 42: 207-212 (2009) https://doi.org/10.4163/kjn.2009.42.3.207

Cited by

  1. GC–MS based metabolomics study of fermented stipe of Sparassis crispa vol.27, pp.4, 2018, https://doi.org/10.1007/s10068-018-0329-x