References
-
Chang WL, Kang KK, Yoo YB, Kim BH, Bae SH. Dietary fiber and
$\beta$ -glucan contents of Sparassis crispa fruit fermented with Lactobacillus brevis and Monascus pilosus. J. Korean Soc. Food Sci. Nutr. 41: 1740-1746 (2012) https://doi.org/10.3746/jkfn.2012.41.12.1740 - Oh DS, Park JM, Park H, Ka KH, Chun WJ. Site characteristics and vegetation structure of the habitat of cauliflower mushroom (Sparassis crispa). Kor. J. Mycol. 37: 33-40 (2009) https://doi.org/10.4489/KJM.2009.37.1.033
- Qi Y, Zhao X, Lim YI, Park KY. Antioxidant and anticancer effects of edible and medicinal mushrooms. J. Korean Soc. Food Sci. Nutr. 42: 655-662 (2013) https://doi.org/10.3746/jkfn.2013.42.5.655
- Cheong JC, Park JS, Hong IP, Seok SJ, Jhune CS, Lee CJ. Cultural characteristics of cauliflower mushroom, Sparassis crispa. Kor. J. Mycol. 36: 16-21 (2008) https://doi.org/10.4489/KJM.2008.36.1.016
-
Ohno N, Miura NN, Nakajima M, Yadomae T. Antitumor 1,3-
$\beta$ - glucan from cultured fruit body of Sparassis crispa. Biol. Pharm. Bull. 23: 866-872 (2000) https://doi.org/10.1248/bpb.23.866 - Kim IK, Yun YC, Shin YC, Yoo JY. Effect of Sparassis crispa extracts on immune cell activation and tumor growth inhibition. J. Life Sci. 23: 984-988 (2013) https://doi.org/10.5352/JLS.2013.23.8.984
- Choi MH, Han HK, Lee YJ, Jo HG, Shin HJ. In vitro anti-cancer activity of hydrophobic fractions of Sparassis latifolia extract using AGS, A529, and HepG2 cell lines. J. Mushrooms 12: 304- 310 (2014) https://doi.org/10.14480/JM.2014.12.4.304
- Choi WS, Shin PG, Bok YY, Jun NH, Kim GD. Anti-inflammatory effects of Sparassis crispa extracts. J. Mushroom Sci. Prod. 11: 46-51 (2013) https://doi.org/10.14480/JM.2013.11.1.046
- Lee MA, Park JK, Um MH, Jeon JW, Lee JM, Park YK. Lipolytic effect of Sparassis crispa extracts in differentiated 3T3-L1 cells and high fat diet-induced obese mice. J. Korean Soc. Food Sci. Nutr. 41: 1708-1715 (2012) https://doi.org/10.3746/jkfn.2012.41.12.1708
- Lee MR, Hou JG, Begum S, Wang YB, Oh DS, Wi AJ, Yoon BS, Sung CK. Anti-obesity effects of Sparassis crispa on high-fat diet-induced obese mice. J. Life Sci. 24: 952-958 (2014) https://doi.org/10.5352/JLS.2014.24.9.952
- Kim MC, Kim JS, Heo MS. Antibacterial, antioxidant and antitumor activities of mushroom mycelium mixed culture extracts. Korean J. Biotechnol. Bioeng. 23: 158-163 (2008)
- Shim JO, Son SG, Yoon SO, Lee YS, Lee TS, Lee SS, Lee KD, Lee MW. The optimal factors for the mycelial growth of Sparassis crispa. Kor. J. Mycol. 26: 39-46 (1998)
- AOAC. Official Method of Analysis of AOAC Intl. 15th ed. Method 954.01. Assosiation of Official Analytical Chemists, Arlington, VA, USA. (1990)
- Gutfinger T. Polyphenols in olive oils. JAOCS. 58: 966-968 (1981) https://doi.org/10.1007/BF02659771
- Blois MS. Antioxidant determinations by the use of a stable free radical. Nature 181: 1199-1200 (1958) https://doi.org/10.1038/1811199a0
- Xu XM, Jun JY, Jeong IH. A study on the antioxidant activity of hae-songi mushroom (Hypsizigus marmoreus) hot water extracts. J. Korean Soc. Food Sci. Nutr. 36: 1351-1357 (2007) https://doi.org/10.3746/jkfn.2007.36.11.1351
- Hong MH, Jin YJ, Pyo YH. Antioxidant properties and ubiquinone contents in different parts of several commercial mushrooms. J. Korean Soc. Food Sci. Nutr. 41: 1235-1241 (2012) https://doi.org/10.3746/jkfn.2012.41.9.1235
-
Barros L, Ferreira MJ, Ferreira ICFR, Baptista P. Total phenols, ascorbic acid,
$\beta$ -carotene and lycopene in portuguese wild edible mushrooms and their antioxidant activities. Food Chem. 103: 413-419 (2007) https://doi.org/10.1016/j.foodchem.2006.07.038 - Nowacka N, Nowak R, Drozd M, Olech M, Los R, Malm A. Analysis of phenolic constituents, antiradical and antimicrobial activity of edible mushrooms growing wild in poland. LWT-Food Sci. Technol. 59: 689-694 (2014) https://doi.org/10.1016/j.lwt.2014.05.041
- Liang CH, Tsai SY, Huang SJ, Liang ZC, Mau JL. Taste quality and antioxidant properties of medicinal mushrooms Phellinus linteus and Sparassis crispa mycelia. Int. J. Med. Mushrooms 12: 141-150 (2010) https://doi.org/10.1615/IntJMedMushr.v12.i2.40
- Gan CH, Nurul Amira B, Asmah R. Antioxidant analysis of different types of edible mushrooms (Agaricus bisporous and Agaricus brasiliensis). IFRJ. 20: 1095-1102 (2013)
- Kim HJ, Ahn MS, Kim GH, Kang MH. Antioxidative and antimicrobial activities of Pleurotus eryngii extracts prepared from different aerial part. Korean J. Food Sci. Technol. 38: 799-804 (2006)
-
Wang SJ, Kim HS, Wi AJ, Yoon BS, Park WS, Park HH, Oh DS. Optimal medium composition of cauliflower mushroom (Sparassis latifolia) cultivation using douglas fir wood chip and comparison of the
$\beta$ -glucan contents of the fruiting body. J. Korean Wood Sci. Technol. 42: 428-438 (2014) https://doi.org/10.5658/WOOD.2014.42.4.428 -
Kofuji K, Aoki A, Tsubaki K, Konishi M, Isobe T, Murata Y. Antioxidant activity of
$\beta$ -glucan. ISRN. Pharmaceutics 5: 125864 (2012) -
Wu Z, Ming J, Gao R, Wang Y, Liang Q, Yu H, Zhao G. Characterization and antioxidant activity of the complex of tea polyphenols and oat
$\beta$ -glucan. J. Agr. Food Chem. 59: 10737- 10746 (2011) https://doi.org/10.1021/jf202722w -
Lee SY, Lee YG, Byeon SE, Han SR, Choi SS, Kim AR, Lee JH, Lee SJ, Hong SY, Cho JY. Mitogen activated protein kinases are prime signalling enzymes in nitric oxide production induced by soluble
$\beta$ -glucan from Sparassis crispa. Arch. Pharm. Res. 33: 1753-1760 (2010) https://doi.org/10.1007/s12272-010-1107-3 -
Harada T, Miura NN, Adachi Y, Nakajima M, Yadomae T, Ohno N. IFN-
$\gamma$ induction by SCG, 1,3-$\beta$ -D-glucan from Sparassis crispa, in DBA/2 mice in vitro. J. Interf. Cytok. Res. 22: 1227- 1239 (2002) https://doi.org/10.1089/10799900260475759 -
Kim HS, Kim JY, Ryu HS, Park HG, Kim YO, Kang JS, Kim HM, Hong JT, Kim YS, Han SB. Induction of dendritic cell maturation by
$\beta$ -glucan isolated from Sparassis crispa. Int. Immunopharmacol. 10: 1284-1294 (2010) https://doi.org/10.1016/j.intimp.2010.07.012 -
Park HG, Shim YY, Choi SO, Park WM.New method development for nanoparticle extraction of water-soluble
$\beta$ -(1$\rightarrow$ 3)-d-glucan from edible mushrooms, Sparassis crispa and Phellinus linteus. J. Agr. Food Chem. 57: 2147-2154 (2009) https://doi.org/10.1021/jf802940x - Balkwill FR, Maylor MS, Malik S. Tumor necrosis factor as an anticancer agent. Eur. J. Cancer 26: 641-644 (1990) https://doi.org/10.1016/0277-5379(90)90097-D
- Chao CC, Hu S, Molitor TW, Brosnan CF, Berman JW. Cytokine prodution by human fetal microglia and astrocytes. J. Immunol. 150: 2659-2660 (1998)
- Mathiak G, Grass G, Herzmann T, Luebke T, Cu-Zetina C, Boehm SA. Capase-1-inhibitor ac-YVAD-cmk reduces LPSlethality in rats without affecting haematology or cytokine responses. Br. J. Pharmacol. 131: 383-386 (2000) https://doi.org/10.1038/sj.bjp.0703629
- Song EJ, Lee CJ, Kim KBWR, Jung JY, Kwak JH, Choi MK, Kim MJ, Ahn DH. Effect of Ecklonia cava water extracts on inhibition of IgE in food allergy mouse model. J. Korean Soc. Food Sci. Nutr. 39: 1776-1782 (2010) https://doi.org/10.3746/jkfn.2010.39.12.1776
- Fiorentino DF, Zlotnik A, Vieira P, Mosmann TR, Howard M, Moore KW, O'Garra A. IL-10 acts on the antigen-presenting cell to inhibit cytokine production by Th1 cells. J. Immunol. 146: 3444-3451 (1991)
-
Shibata A, Hida TH, Ishibashi KI, Miura NN, Adachi Y, Ohno N. Disruption of actin cytoskeleton enhanced cytokine synthesis of splenocytes stimulated with
$\beta$ -glucan from the cauliflower medicinal mushroom, Sparassis crispa Wulf.:Fr. (higher basidiomycetes) in vitro. Int. J. Med. Mushrooms 14: 257-269 (2012) https://doi.org/10.1615/IntJMedMushr.v14.i3.30 -
Harada T, Miura N, Adachi Y, Nakajima M, Yadomae T, Ohno N. Effect of SCG, 1,3-
$\beta$ -D-glucan from Sparassis crispa on the hematopoietic response in cyclophosphamide induced leukopenic mice. Biol. Pharm. Bull. 25: 931-939 (2002) https://doi.org/10.1248/bpb.25.931 - Mertin J, Meade CJ, Hunt R. Importance of the spleen for the immun inhibitory action of linoleic acid in mice. Int. Arch. Aller. A. Imm. 53: 469-473 (1977) https://doi.org/10.1159/000231785
- Hafeez BB, Ahmad I, Haque R, Raisuddin S. Protective effect of Cassia occidentalis L. on cyclophosphamide-induced suppression of humoral immunity in mice. J. Ethnopharmacol. 75: 13-18 (2001) https://doi.org/10.1016/S0378-8741(00)00382-2
- Ryu HS, Kim KO, Kim HS. Effects of plant water extract Codonopsis Lanceolatae on mouse immune cell activation ex vivo. Korean J. Nutr. 42: 207-212 (2009) https://doi.org/10.4163/kjn.2009.42.3.207
Cited by
- GC–MS based metabolomics study of fermented stipe of Sparassis crispa vol.27, pp.4, 2018, https://doi.org/10.1007/s10068-018-0329-x