DOI QR코드

DOI QR Code

PC12 신경세포에서 고당 및 과산화수소로 유도된 산화적 스트레스에 대한 곰취 추출물의 효과

Effect of gomchwi (Ligularia fischeri) extract against high glucose- and H2O2-induced oxidative stress in PC12 cells

  • 박상현 (경상대학교 응용생명과학부(BK21 plus), 농업생명과학연구원) ;
  • 박선경 (경상대학교 응용생명과학부(BK21 plus), 농업생명과학연구원) ;
  • 하정수 (경상대학교 응용생명과학부(BK21 plus), 농업생명과학연구원) ;
  • 이두상 (경상대학교 응용생명과학부(BK21 plus), 농업생명과학연구원) ;
  • 강진용 (경상대학교 응용생명과학부(BK21 plus), 농업생명과학연구원) ;
  • 김종민 (경상대학교 응용생명과학부(BK21 plus), 농업생명과학연구원) ;
  • 이욱 (국립산림과학원 특용자원연구과) ;
  • 허호진 (경상대학교 응용생명과학부(BK21 plus), 농업생명과학연구원)
  • Park, Sang Hyun (Division of Applied Life Science (BK21 plus), Institute of Agriculture and Life Science, Gyeongsang National University) ;
  • Park, Seon Kyeong (Division of Applied Life Science (BK21 plus), Institute of Agriculture and Life Science, Gyeongsang National University) ;
  • Ha, Jeong Su (Division of Applied Life Science (BK21 plus), Institute of Agriculture and Life Science, Gyeongsang National University) ;
  • Lee, Du Sang (Division of Applied Life Science (BK21 plus), Institute of Agriculture and Life Science, Gyeongsang National University) ;
  • Kang, Jin Yong (Division of Applied Life Science (BK21 plus), Institute of Agriculture and Life Science, Gyeongsang National University) ;
  • Kim, Jong Min (Division of Applied Life Science (BK21 plus), Institute of Agriculture and Life Science, Gyeongsang National University) ;
  • Lee, Uk (Division of Special Purpose Tree, National Institute of Forest Science) ;
  • Heo, Ho Jin (Division of Applied Life Science (BK21 plus), Institute of Agriculture and Life Science, Gyeongsang National University)
  • 투고 : 2016.05.24
  • 심사 : 2016.06.29
  • 발행 : 2016.10.31

초록

본 연구에서는 곰취(Ligularia fischeri)의 in vitro 혈당 억제 가능성과 고당으로 인한 산화적 스트레스에 대한 신경세포 보호효과 및 대표적 생리활성물질을 분석하였다. 곰취 아세트산에틸 분획물은 다른 분획물들보다 뛰어난 총 페놀 함량(223.33 mg GAE/g)을 나타내었으며, 또한 인체에서 당을 흡수하기 위해 필요한 효소인 알파글루코시데이스 억제효과에 의해 당뇨에 의한 고혈당을 줄여줄 수 있을 것으로 기대된다. 유의적 ABTS 라디칼 소거활성 및 말론다이알데하이드(MDA) 생성 억제효과를 갖는 곰취 아세트산에틸 분획물은 과산화수소 및 고당으로 유발시킨 산화적 스트레스 감소 및 이로 인한 신경세포 보호효과를 나타내었다. 곰취 아세트산에틸 분획물의 주요 생리활성 물질을 확인하기 위해 HPLC분석을 실시한 결과, 대표적인 페놀성 화합물은 클로로겐산의 이성질체인 3,5-DCQA가 존재하는 것으로 확인되었다. 본 연구 결과를 바탕으로 고려할 때, 곰취는 고당으로 유도되는 산화적 스트레스로부터 신경퇴행성 질환 예방 소재로서의 활용가능성이 있을 것으로 추정된다.

Effects of the ethyl acetate fraction from gomchwi (Ligularia fischeri) extract against high $glucose/H_2O_2-induced$ oxidative stress and in vitro neurodegeneration were investigated to confirm the physiological property of the extract. The ethyl acetate fraction of gomchwi extract showed the highest total phenolic contents than the other solvent fractions. An anti-hyperglycemic activity of the ethyl acetate fraction was evaluated using the ${\alpha}-glucosidase$ inhibitory assay, and the half maximal inhibitory concentration ($IC_{50}$) value for ${\alpha}-glucosidase$ was found to be $727.64{\mu}g/mL$. In addition, the ethyl acetate fraction showed excellent 2,2'-azino-bis (3-ethylbenzthiazoline-6-sulfonic acid) diammonium salt radical scavenging activity, and inhibition of malondialdehyde production. The ethyl acetate fraction also decreased intracellular reactive oxygen species, whereas neuronal cell viability against high glucose/$H_2O_2$-induced cytotoxicity was found to be increased. Finally, 3,5-dicaffeoylquinic acid as a main phenolic compound in the ethyl acetate fraction was analyzed by high-performance liquid chromatography. These results suggest that gomchwi might be a good natural source of functional materials to prevent diabetic neurodegeneration.

키워드

참고문헌

  1. Donath MY. Targeting inflammation in the treatment of type 2 diabetes: Time to start. Nat. Rev. Drug Discov. 13: 465-476 (2014) https://doi.org/10.1038/nrd4275
  2. Brownlee M. The pathobiology of diabetic complications a unifying mechanism. Diabetes 54: 1615-1625 (2005) https://doi.org/10.2337/diabetes.54.6.1615
  3. Krentz AJ, Bailey CJ. Oral antidiabetic agents: current role in type 2 diabetes mellitus. Drugs 65: 385-411 (2005) https://doi.org/10.2165/00003495-200565030-00005
  4. Papa S, Skulachev VP. Reactive oxygen species, mitochondria, apoptosis and aging. Mol. Cell. Biochem. 174: 305-319 (1997) https://doi.org/10.1023/A:1006873518427
  5. Comporti M. Free radicals, oxidative stress, and antioxidants. J. Siena Acad. Sci. 2: 13-26 (2012) https://doi.org/10.4081/jsas.2010.13
  6. Heo HJ, Kim DO, Choi SJ, Shin DH, Lee CY. Potent inhibitory effect of flavonoids in Scutellaria baicalensis on amyloid $\beta$ protein- induced neurotoxicity. J. Agr. Food Chem. 52: 4128-4132 (2004) https://doi.org/10.1021/jf049953x
  7. Bidchol AM, Wilfred A, Abhijna P, Harish R. Free radical scavenging activity of aqueous and ethanolic extract of Brassica oleracea L. var. italic. Food. Bioprocess Tech. 4: 1137-1143 (2011) https://doi.org/10.1007/s11947-009-0196-9
  8. Piao XL, Kim HY, Yokozawa T, Lee YA, Piao XS, Cho EJ. Protective effects of broccoli (Brassica oleracea) and its active components against radical-induced oxidative damage. J. Nutr. Sci. Vitaminol. 51: 142-147 (2005) https://doi.org/10.3177/jnsv.51.142
  9. Cho SD, Kim GH. Food product development and quality characteristics of Ligularia fischeri for food resources. Korean J. Food Preserv. 12: 43-47 (2005).
  10. Bae JH, Yu SO, Kim YM, Chon SU, Kim BW, Heo BG. Physiological activity of methanol extracts from Ligularia fischeri and their hyperplasia inhibition activity of cancer cell. J. Bio-Environ. Control 18: 67-73 (2009)
  11. Kim, DO, Jeong SW, Lee CY. Antioxidant capacity of phenolic phytochemical from various cultivars of plums. Food Chem. 81: 321-326 (2003) https://doi.org/10.1016/S0308-8146(02)00423-5
  12. Apostolidis E, Kwon YI, Shetty K. Inhibitory potential of herb, fruit, and fungal-enriched cheese against key enzymes linked to type 2 diabetes and hypertension. Innov. Food Sci. Emerg. 8: 46- 54 (2007) https://doi.org/10.1016/j.ifset.2006.06.001
  13. Kwak JH, Choi GN, Park JH, Kim JH, Jeong HR, Jeong CH, Heo HJ. Antioxidant and neuronal cell protective effect of purple sweet potato extract. J. Agric. Life Sci. 57-66 (2010)
  14. Chang ST, Wu JH, Wang SY, Kang PL, Yang NS, Shyur LF. Antioxidant activity of extracts from Acacia confusa bark and heartwood. J. Agr. Food Chem. 49: 3420-3424 (2001) https://doi.org/10.1021/jf0100907
  15. Heo HJ, Cho HY, Hong BS, Kim HK, Kim EK, Kim BG, Shin DH. Protective effect of 4',5-dihydroxy-3',6,7-trimethoxyflavone from Artemisia asiatica against $A{\beta}$-induced oxidative stress in PC12 cells. Amyloid 8: 194-201 (2001) https://doi.org/10.3109/13506120109007362
  16. Liu MH, Yuan C, He J, Tan TP, Wu SJ, Fu HY, Liu J, Yu S, Chen YD, Le QF, Tian W, Hu HJ, Zhang Y, Lin XL. Resveratrol protects PC12 cells from high glucose-induced neurotoxicity via PI3K/Akt/FoxO3a pathway. Cell Mol. Neurobiol. 35: 513-522 (2015) https://doi.org/10.1007/s10571-014-0147-5
  17. Kim HY, Woo KS, Hwang IG, Lee YR, Jeong HS. Effects of heat treatments on the antioxidant activities of fruits and vegetables. Korean J. Food Sci. Technol. 40: 177-170 (2008)
  18. Kim KH, Kim NY, Kim SH, Han IA, Yook HS. Study on antioxidant effects of fractional extracts from Ligularia stenocephala leaves. J. Korean Soc. Food Sci. Nutr. 41: 1220-1225 (2012) https://doi.org/10.3746/jkfn.2012.41.9.1220
  19. Wright E, ScismBacon JL, Glass LC. Oxidative stress in type 2 diabetes: The role of fasting and postprandial glycaemia. Int. J. Clin. Pract. 60: 308-314 (2006) https://doi.org/10.1111/j.1368-5031.2006.00825.x
  20. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice- Evans C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Bio. Med. 26: 1231- 1237 (1999) https://doi.org/10.1016/S0891-5849(98)00315-3
  21. Lovell MA, Xie C, Markesbery WR. Acrolein is increased in alzheimer's disease brain and is toxic to primary hippocampal cultures. Neurobiol. Aging 22: 187-194 (2001) https://doi.org/10.1016/S0197-4580(00)00235-9
  22. Ha GJ, Lee DS, Seung TW, Park CH, Park SK, Jin DE, Kim NK, Shin HY, Heo HJ. Anti-amnesic and neuroprotective effect of Artemisia argyi H. (Seomae mugwort) extracts. Korean J. Food Sci. Technol. 47: 380-387 (2015) https://doi.org/10.9721/KJFST.2015.47.3.380
  23. Hsieh HL, Yang CM. Role of redox signaling in neuroinflammation and neurodegenerative diseases. Biomed. Res. Int. 2013: 484613 (2013)
  24. Gao Z, Huang K, Xu H. Protective effects of flavonoids in the roots of Scutellaria baicalensis georgi against hydrogen peroxideinduced oxidative stress in HS-SY5Y cells. Pharmacol. Res. 43: 173-178 (2001) https://doi.org/10.1006/phrs.2000.0761
  25. Ha JS, Park SK, Park CH, Seung TW, Guo TJ, Kang JY, Lee DS, Kim JM, Heo HJ. Neuronal cell protective effect of new green extract against $H_2O_2$-induced oxidative stress and analysis of bioactive compounds. Korean J. Food Sci. Technol. 47: 673- 679 (2015) https://doi.org/10.9721/KJFST.2015.47.5.673
  26. Zhao B. Natural antioxidants protect neurons in alzheimer's disease and Parkinson's disease. Neurochem. Res. 34: 630-638 (2009) https://doi.org/10.1007/s11064-008-9900-9
  27. Kerem Z, Bilkis I, Flaishman MA, Sivan L. Antioxidant activity and inhibition of $\alpha$-glucosidase by trans-resveratrol, piceid, and a novel trans-stilbene from the roots of israeli Rumex bucephalophorus L. J. Agr. Food Chem. 54: 1243-1247 (2006) https://doi.org/10.1021/jf052436+
  28. Shang YF, Kim SM, Song DG, Pan CH, Lee WJ, Um BH. Isolation and identification of antioxidant compounds from Ligularia fischeri. J. Food Sci. 75: C530-C535 (2010) https://doi.org/10.1111/j.1750-3841.2010.01714.x
  29. Rice-Evans CA, Miller NJ, Paganga G. Structure antioxidant activity relationship of flavonoids and phenolic acids. Free Radical Biol. Med. 20: 933-956 (1996) https://doi.org/10.1016/0891-5849(95)02227-9
  30. Kim SS, Park RY, Jeon HJ, Kwon YS, Chun W. Neuroprotective effects of 3,5-dicaffeoylquinic acid on hydrogen peroxide-induced cell deathin SH-SY5Y cells. Phytother. Res. 54: 243-247 (2005)