DOI QR코드

DOI QR Code

An Electric Load Forecasting Scheme for University Campus Buildings Using Artificial Neural Network and Support Vector Regression

인공 신경망과 지지 벡터 회귀분석을 이용한 대학 캠퍼스 건물의 전력 사용량 예측 기법

  • 문지훈 (고려대학교 전기전자공학과) ;
  • 전상훈 (서울아산병원 의료영상로봇연구실) ;
  • 박진웅 (고려대학교 전기전자공학과) ;
  • 최영환 (귀뚜라미 연구기획실) ;
  • 황인준 (고려대학교 전기전자공학과)
  • Received : 2016.08.09
  • Accepted : 2016.08.29
  • Published : 2016.10.31

Abstract

Since the electricity is produced and consumed simultaneously, predicting the electric load and securing affordable electric power are necessary for reliable electric power supply. In particular, a university campus is one of the highest power consuming institutions and tends to have a wide variation of electric load depending on time and environment. For these reasons, an accurate electric load forecasting method that can predict power consumption in real-time is required for efficient power supply and management. Even though various influencing factors of power consumption have been discovered for the educational institutions by analyzing power consumption patterns and usage cases, further studies are required for the quantitative prediction of electric load. In this paper, we build an electric load forecasting model by implementing and evaluating various machine learning algorithms. To do that, we consider three building clusters in a campus and collect their power consumption every 15 minutes for more than one year. In the preprocessing, features are represented by considering periodic characteristic of the data and principal component analysis is performed for the features. In order to train the electric load forecasting model, we employ both artificial neural network and support vector machine. We evaluate the prediction performance of each forecasting model by 5-fold cross-validation and compare the prediction result to real electric load.

전기는 생산과 소비가 동시에 이루어지므로 필요한 전력 사용량을 예측하고, 이를 충족시킬 수 있는 충분한 공급능력을 확보해야만 안정적인 전력 공급이 가능하다. 특히, 대학 캠퍼스는 전력 사용이 많은 곳으로 시간과 환경에 따라 전력 변화폭이 다양하다. 이러한 이유로, 효율적인 전력 공급 및 관리를 위해서는 전력 사용량을 실시간으로 예측할 수 있는 모델이 요구된다. 국내외 대학 건물에 대해서는 전력 사용 패턴과 사례 분석을 통해 전력 사용에 영향을 주는 요인들을 파악하기 위한 다양한 연구가 진행되었으나, 전력 사용량의 정량적 예측을 위해서는 더 많은 연구가 필요한 상황이다. 본 논문에서는, 기계 학습 기법을 이용하여 대학 캠퍼스의 전력 사용량 예측 모델을 구성하고 평가한다. 이를 위해, 대학 캠퍼스의 주요 건물 클러스터에 대해 전력 사용량을 15분마다 1년 이상 수집한 데이터 셋을 사용한다. 수집된 전력 사용량 데이터는 수열 형태의 시계열 데이터로 기계 학습 모델에 적용 시 주기성 정보를 반영할 수 없으므로, 2차원 공간의 연속적인 데이터로 증강함으로써 주기성을 반영하였다. 이 데이터와 교육기관의 특성을 반영하기 위한 요일과 공휴일로 구성된 8차원 특성 벡터에 대해 주성분 분석(Principal Component Analysis) 알고리즘을 적용한다. 이어, 인공 신경망(Artificial Neural Network)과 지지 벡터 회귀분석(Support Vector Regression)을 이용하여 전력 사용량 예측 모델을 학습시키고, 5겹 교차검증(5-fold Cross Validation)을 통하여 적용된 기법의 성능을 평가하여, 실제 전력 사용량과 예측 결과를 비교한다.

Keywords

References

  1. M. H. Chung and E. K. Rhee, "Potential opportunities for energy conservation in existing buildings on university campus: A field survey in Korea," Energy and Buildings, Vol.78, pp.176-182, 2014. https://doi.org/10.1016/j.enbuild.2014.04.018
  2. W. J. Lee, D. W. Lee, J. B. Lee, J. H. Yoon, and U. C. Shin, "A Case Study of Electric Power Consumption Characteristics in University Building," Journal of the Korean Solar Energy Society, Vol.32, No.4, pp.90-95, 2012. https://doi.org/10.7836/kses.2012.32.4.090
  3. B. K. Koo, W. H. Hong, and K. M. Kim, "A Study on the Energy Reduction Effect Using Renewable Energy Through the Analysis of Energy Consumption Structure in the University Buildings," Journal of the Architectural Institute of Korea Planning & Design, Vol.29, No.9, pp.203-210, 2013. https://doi.org/10.5659/JAIK_PD.2013.29.9.203
  4. N. S. Youn and J. T. Kim, "Survey and Analysis of Power Energy Usage of University Buildings," Journal of the Korea Institute of Ecological Architecture and Environment, Vol.13, No.2, pp.27-32, 2013.
  5. J. W. Jung, D. W. Kim, J. M. Lee, J. H. Yang, and H. T. Seok, "The Survey and Analysis of Electric Power Consumption in University Building by Analyzing Case Study," Journal of the Korean Society of Living Environmental System, Vol.17, No.1, pp.1-9, 2010.
  6. K. C. Noh, S. M. Lee, T. G. Lee, M. D. Oh, and Y. J. Lee, "Comparison of Electricity Consumption in University Buildings for Low Energy Consumption Benchmarking," in Proceedings of the SAREK Summer Annual Conference, PyeongChang, pp.823-825, 2013.
  7. A. S. Ahmad, M. Y. Hassan, M. P. Abdullah, H. A. Rahman, F. Hussin, H. Abdullah, and R. Saidur, "A review on applications of ANN and SVM for building electrical energy consumption forecasting," Renewable and Sustainable Energy Reviews, Vol.33, pp.102-109, 2014. https://doi.org/10.1016/j.rser.2014.01.069
  8. M. Q. Raza and A. Khosravi, "A review on artificial intelligence based load demand forecasting techniques for smart grid and buildings," Renewable and Sustainable Energy Reviews, Vol.50, pp.1352-1372, 2015. https://doi.org/10.1016/j.rser.2015.04.065
  9. L. Hernandez, C. Baladron, J. M. Aguiar, B. Carro, A. J. Sanchez-Esguevillas, J. Lloret, and J. Massana, "A survey on electric power demand forecasting: future trends in smart grids, microgrids and smart buildings," IEEE Communications Surveys & Tutorials, Vol.16, No.3, pp.1460-1495, 2014. https://doi.org/10.1109/SURV.2014.032014.00094
  10. K. Li, C. Hu, G. Liu, and W. Xue, "Building's electricity consumption prediction using optimized artificial neural networks and principal component analysis," Energy and Buildings, Vol.108, pp.106-113, 2015. https://doi.org/10.1016/j.enbuild.2015.09.002
  11. K. Li, H. Su, and J. Chu, "Forecasting building energy consumption using neural networks and hybrid neurofuzzy system: A comparative study," Energy and Buildings, Vol.43, No.10, pp.2893-2899, 2011. https://doi.org/10.1016/j.enbuild.2011.07.010
  12. A. Bagnasco, F. Fresi, M. Saviozzi, F. Silvestro, and A. Vinci, "Electrical consumption forecasting in hospital facilities: An application case," Energy and Buildings, Vol.103, pp.261-270, 2015. https://doi.org/10.1016/j.enbuild.2015.05.056
  13. K. Grolinger, A. L'Heureux, M. A. Capretz, and L. Seewald, "Energy forecasting for event venues: Big Data and prediction accuracy," Energy and Buildings, Vol.112, pp.222-233, 2016. https://doi.org/10.1016/j.enbuild.2015.12.010
  14. H. Chitsaz, H. Shaker, H. Zareipour, D. Wood, and N. Amjady, "Short-term electricity load forecasting of buildings in microgrids," Energy and Buildings, Vol.99, pp.50-60, 2015. https://doi.org/10.1016/j.enbuild.2015.04.011
  15. K. P. Amber, M. W. Aslam, and S. K. Hussain, "Electricityconsumption forecasting models for administration buildingsof the UK higher education sector," Energy and Buildings,Vol.90, pp.127-136, 2015. https://doi.org/10.1016/j.enbuild.2015.01.008
  16. L. Ghelardoni, A. Ghio, and D. Anguita, "Energy LoadForecasting Using Empirical Mode Decomposition andSupport Vector Regression," IEEE Transactions on SmartGrid, Vol.4, No.1, pp.549-556, 2013.
  17. S. Jurado, A. Nebot, F. Mugica, and N. Avellana, "Hybridmethodologies for electricity load forecasting: Entropy-basedfeature selection with machine learning and soft computingtechniques," Energy, Vol.86, pp.276-291, 2015. https://doi.org/10.1016/j.energy.2015.04.039
  18. J. Schmidhuber, "Deep learning in neural networks: Anoverview," Neural Networks, Vol.61, pp.85-117, 2015. https://doi.org/10.1016/j.neunet.2014.09.003
  19. Korea Meteorological Administration [Internet],https://data.kma.go.kr/cmmn/main.do.
  20. H. Abdi and L. J. Williams, "Principal component analysis,"Wiley Interdisciplinary Reviews: Computational Statistics,Vol.2, No.4, pp.433-459, 2010. https://doi.org/10.1002/wics.101
  21. Scikit-learn [Internet], http://scikit-learn.org/stable/.
  22. PyBrain [Internet], http://pybrain.org/.