References
- M. H. Chung and E. K. Rhee, "Potential opportunities for energy conservation in existing buildings on university campus: A field survey in Korea," Energy and Buildings, Vol.78, pp.176-182, 2014. https://doi.org/10.1016/j.enbuild.2014.04.018
- W. J. Lee, D. W. Lee, J. B. Lee, J. H. Yoon, and U. C. Shin, "A Case Study of Electric Power Consumption Characteristics in University Building," Journal of the Korean Solar Energy Society, Vol.32, No.4, pp.90-95, 2012. https://doi.org/10.7836/kses.2012.32.4.090
- B. K. Koo, W. H. Hong, and K. M. Kim, "A Study on the Energy Reduction Effect Using Renewable Energy Through the Analysis of Energy Consumption Structure in the University Buildings," Journal of the Architectural Institute of Korea Planning & Design, Vol.29, No.9, pp.203-210, 2013. https://doi.org/10.5659/JAIK_PD.2013.29.9.203
- N. S. Youn and J. T. Kim, "Survey and Analysis of Power Energy Usage of University Buildings," Journal of the Korea Institute of Ecological Architecture and Environment, Vol.13, No.2, pp.27-32, 2013.
- J. W. Jung, D. W. Kim, J. M. Lee, J. H. Yang, and H. T. Seok, "The Survey and Analysis of Electric Power Consumption in University Building by Analyzing Case Study," Journal of the Korean Society of Living Environmental System, Vol.17, No.1, pp.1-9, 2010.
- K. C. Noh, S. M. Lee, T. G. Lee, M. D. Oh, and Y. J. Lee, "Comparison of Electricity Consumption in University Buildings for Low Energy Consumption Benchmarking," in Proceedings of the SAREK Summer Annual Conference, PyeongChang, pp.823-825, 2013.
- A. S. Ahmad, M. Y. Hassan, M. P. Abdullah, H. A. Rahman, F. Hussin, H. Abdullah, and R. Saidur, "A review on applications of ANN and SVM for building electrical energy consumption forecasting," Renewable and Sustainable Energy Reviews, Vol.33, pp.102-109, 2014. https://doi.org/10.1016/j.rser.2014.01.069
- M. Q. Raza and A. Khosravi, "A review on artificial intelligence based load demand forecasting techniques for smart grid and buildings," Renewable and Sustainable Energy Reviews, Vol.50, pp.1352-1372, 2015. https://doi.org/10.1016/j.rser.2015.04.065
- L. Hernandez, C. Baladron, J. M. Aguiar, B. Carro, A. J. Sanchez-Esguevillas, J. Lloret, and J. Massana, "A survey on electric power demand forecasting: future trends in smart grids, microgrids and smart buildings," IEEE Communications Surveys & Tutorials, Vol.16, No.3, pp.1460-1495, 2014. https://doi.org/10.1109/SURV.2014.032014.00094
- K. Li, C. Hu, G. Liu, and W. Xue, "Building's electricity consumption prediction using optimized artificial neural networks and principal component analysis," Energy and Buildings, Vol.108, pp.106-113, 2015. https://doi.org/10.1016/j.enbuild.2015.09.002
- K. Li, H. Su, and J. Chu, "Forecasting building energy consumption using neural networks and hybrid neurofuzzy system: A comparative study," Energy and Buildings, Vol.43, No.10, pp.2893-2899, 2011. https://doi.org/10.1016/j.enbuild.2011.07.010
- A. Bagnasco, F. Fresi, M. Saviozzi, F. Silvestro, and A. Vinci, "Electrical consumption forecasting in hospital facilities: An application case," Energy and Buildings, Vol.103, pp.261-270, 2015. https://doi.org/10.1016/j.enbuild.2015.05.056
- K. Grolinger, A. L'Heureux, M. A. Capretz, and L. Seewald, "Energy forecasting for event venues: Big Data and prediction accuracy," Energy and Buildings, Vol.112, pp.222-233, 2016. https://doi.org/10.1016/j.enbuild.2015.12.010
- H. Chitsaz, H. Shaker, H. Zareipour, D. Wood, and N. Amjady, "Short-term electricity load forecasting of buildings in microgrids," Energy and Buildings, Vol.99, pp.50-60, 2015. https://doi.org/10.1016/j.enbuild.2015.04.011
- K. P. Amber, M. W. Aslam, and S. K. Hussain, "Electricityconsumption forecasting models for administration buildingsof the UK higher education sector," Energy and Buildings,Vol.90, pp.127-136, 2015. https://doi.org/10.1016/j.enbuild.2015.01.008
- L. Ghelardoni, A. Ghio, and D. Anguita, "Energy LoadForecasting Using Empirical Mode Decomposition andSupport Vector Regression," IEEE Transactions on SmartGrid, Vol.4, No.1, pp.549-556, 2013.
- S. Jurado, A. Nebot, F. Mugica, and N. Avellana, "Hybridmethodologies for electricity load forecasting: Entropy-basedfeature selection with machine learning and soft computingtechniques," Energy, Vol.86, pp.276-291, 2015. https://doi.org/10.1016/j.energy.2015.04.039
- J. Schmidhuber, "Deep learning in neural networks: Anoverview," Neural Networks, Vol.61, pp.85-117, 2015. https://doi.org/10.1016/j.neunet.2014.09.003
- Korea Meteorological Administration [Internet],https://data.kma.go.kr/cmmn/main.do.
- H. Abdi and L. J. Williams, "Principal component analysis,"Wiley Interdisciplinary Reviews: Computational Statistics,Vol.2, No.4, pp.433-459, 2010. https://doi.org/10.1002/wics.101
- Scikit-learn [Internet], http://scikit-learn.org/stable/.
- PyBrain [Internet], http://pybrain.org/.