DOI QR코드

DOI QR Code

Study on the Array type antenna of 1.8GHz

1.8GHz 대역용 배열 구조 안테나 연구

  • Received : 2016.09.27
  • Accepted : 2016.10.24
  • Published : 2016.10.31

Abstract

In this paper, we studied the design and fabrication of array antenna at around 1.8 GHz band. To improve of frequency properties of antenna, single feed microstrip patch antenna was simulated by HFSS(High Frequency Structure Simulator). A $1{\times}2$ array antenna of 1.8 GHz for LTE band was designed and fabricated by photolithography on an FR4 substrate (dielectric constant of 4.4 and thickness of 0.8 mm). The fabricated antenna was analyzed by network analyzer. The measured results agree well with the simulations, which confirmed the validity of this study. The fabricated $1{\times}2$ array antenna showed a center frequency, the minimum return loss and impedance were 1.82GHz, -30.5dB, and $49.6{\Omega}$ respectively.

본 논문에서는 1.8 GHz 대역의 배열 안테나를 연구하였다. 선로 방식으로는 마이크로 스트립 방식을 채택하였고 특성 평가를 위해 안테나 제작 및 특성을 측정하였다. 각 선로방식의 안테나에 대한 주파수와 반사손실에 관한 파라미터 특성을 HFSS(High Frequency Structure Simulator)를 통해 분석하고 이것을 이용하여 안테나를 설계하였다. 시뮬레이션 결과를 바탕으로 1.8GHz LTE 대역에서 사용 가능한 $1{\times}2$ 배열 안테나를 설계하고, 설계된 안테나를 유전율 4.4, 두께 0.8mm인 FR4-epoxy 기판을 사용 하여 포토리소그래피 방법으로 안테나를 제작하였다. 제작된 안테나는 최종적으로 회로망 분석기(Network Analyzer)를 통해 안테나 특성을 분석하였다. 측정된 안테나의 주파수 특성은 시뮬레이션 결과와 잘 일치하여 본 연구의 타당성을 확인 할 수 있었다. 제작된 $1{\times}2$ 배열 안테나는 중심주파수 1.82 GHz, 입력반사손실 -30.5 dB, 임피던스 $49.6{\Omega}$의 결과 값을 보였다.

Keywords

References

  1. C. L. Tang and K. L. Wong, "Single-feed slotted equilateral-triangular microstrip antenna for circular polarization," IEEE Trans. Antennas Propagat., vol. 47, no. 6, 1999, pp. 1174-1178. https://doi.org/10.1109/8.785749
  2. J. Yoon and Y. Rhee, "Design and Fabrication of Dual-Ring Monopole Antenna for Wideband Characteristics," J. of the Korea Institute of Electronic Communication Sciences, vol. 8, no. 9, 2013, pp. 1285-1291. https://doi.org/10.13067/JKIECS.2013.8.9.1285
  3. J. Lim, M. Lee and D. Yang, "Disk Sector Antenna fed by CPW for UWB Communications," J. of the Korea Academia-Industrial Cooperation Society, vol. 10, no. 2, 2009, pp. 303-312. https://doi.org/10.5762/KAIS.2009.10.2.303
  4. Y. Park, "Study on the Single Feed Antenna for 2.64 GHz," J. of the Korea Academia-Industrial Cooperation Society, vol. 14, no. 2, 2013, pp. 811-815. https://doi.org/10.5762/KAIS.2013.14.2.811
  5. Y. Park, "Dual T type antenna study for LTE communication," J. of the Korea Institute of Electronic Communication Sciences, vol. 10, no. 1, 2015, pp. 7-11. https://doi.org/10.13067/JKIECS.2015.10.1.7
  6. O. Kim, "Design of Dual-band Microstrip Antenna for Wireless Communication Applications," J. of the Korea Institute of Electronic Communication Sciences, vol. 7, no. 6, 2012, pp. 1275-1279. https://doi.org/10.13067/JKIECS.2012.7.6.1275
  7. G. Kim, "Design of slotted waveguide antenna with slot depth variation," J. of the Korea Institute of Electronic Communication Sciences, vol. 8, no. 4, 2013, pp. 535-540. https://doi.org/10.13067/JKIECS.2013.8.4.535
  8. M. Nikolic, A. Djordjevic, and A. Nehorai, "Microstrip Antennas With Suppressed Radiation in Horizontal Directions and Reduced Coupling," IEEE Trans. Antennas Propag., vol. 53, no. 11, 2005, pp. 3469-3476. https://doi.org/10.1109/TAP.2005.858847
  9. H. Chen, "Broadband CPW-fed square slot antennas with a widened stub," IEEE Trans. Antennas Propag., vol. 51, no. 8, Aug. 2003, pp. 1982-1986. https://doi.org/10.1109/TAP.2003.814747
  10. Y. Yoshimura, "A microstripline slot antenna," IEEE Trans. Microwave Theory Tech., vol. 20, no. 11, Nov. 1972, pp. 760-762. https://doi.org/10.1109/TMTT.1972.1127868