DOI QR코드

DOI QR Code

영가철이 고정된 입상활성탄 제조를 위한 최적 합성조건 도출

Optimization of Synthesis Condition for Nanoscale Zero Valent Iron Immobilization on Granular Activated Carbon

  • 황유훈 (서울과학기술대학교 환경공학과) ;
  • ;
  • 이원태 (금오공과대학교 환경공학과) ;
  • Hwang, Yuhoon (Department of Environmental Engineering, Seoul National University of Science and Technology) ;
  • Mines, Paul D. (Department of Environmental Engineering, Technical University of Denmark) ;
  • Lee, Wontae (School of Civil and Environmental Engineering, Kumoh National Institute of Technology) ;
  • Andersen, Henrik R. (Department of Environmental Engineering, Technical University of Denmark)
  • 투고 : 2016.08.19
  • 심사 : 2016.09.13
  • 발행 : 2016.09.30

초록

나노 영가철은 산화환원기작을 통하여 염소계 유기화합물과 같은 물질을 효과적으로 처리할 수 있다고 알려져 있지만, 작은 사이즈로 인하여 회수가 어려운 단점으로 인하여 실제 수처리 공정에서는 유출 등의 우려로 널리 적용되지 못하였다. 이와 같은 한계를 극복하기 위하여 활성탄과 같은 담체에 고정화 하여 사용하는 연구가 활발히 진행되었다. 본 연구에서는 활성탄에 영가철의 고정화 시 대표적으로 사용되는 고온 및 상온의 두 가지 경로에 대해 평가하였으며, 결과를 바탕으로 최적의 합성 조건을 도출하였다. 효과적인 나노영가철/입상활성탄 복합체를 합성하기 위해서는 높은 철 함량과 더불어 영가철의 분율을 높이는 것이 중요하며, 이를 위해서는 합성 과정에서 형성되는 철 산화물 및 수산화물의 형성을 억제하는 것이 중요한 것으로 나타났다. 또한 영가철의 분율을 높이기 위한 환원 시간 및 중간 건조 과정의 유무 등 합성 조건의 영향을 살펴보았으며, 그 결과 중간 건조 과정 없이 바로 $NaBH_4$를 이용한 환원 조건을 약 2시간 이상 유지하는 것이 최적 조건임을 확인하였다. 합성된 나노영가철/입상활성탄 복합체는 활성탄의 흡착 능력과 영가철의 환원 능력을 동시에 보유함으로써 나이트로벤젠과 같은 환원이 가능한 오염물질의 제거에 효과적으로 나타났다.

Nanoscale zero valent iron (nZVI) has been intensively studied for the treatment of a plethora of pollutants through reductive reaction, however, the nano size should be of concern when nZVI is considered for water treatment, due to difficulties in recovery. The loss of nZVI causes not only economical loss, but also potential risk to human health and environment. Thus, the immobilization onto coarse or structured support is essential. In this study, two representative processes for nZVI immobilization on granular activated carbon (GAC) were evaluated, and optimized conditions for synthesizing Fe/GAC composite were suggested. Both total iron content and $Fe_0$ content can be significantly affected by preparation processes, therefore, it was important to avoid oxidation during preparation to achieve higher reduction capacity. Synthesis conditions such as reduction time and existence of intermediate drying step were investigated to improve $Fe_0$ content of Fe/GAC composites. The optimal condition was two hours of $NaBH_4$ reduction without intermediate drying process. The prepared Fe/GAC composite showed synergistic effect of the adsorption capability of the GAC and the degradation capability of the nZVI, which make this composite a very effective material for environmental remediation.

키워드

참고문헌

  1. Savage, N. and Diallo, M. S., "Nanomaterials and Water Purification: Opportunities and Challenges," J. Nanopart. Res., 7(4), 331-342(2005). https://doi.org/10.1007/s11051-005-7523-5
  2. Tang, C. Y., Zhao, Y., Wang, R., Helix-Nielsen, C. and Fane, A. G., "Desalination by biomimetic aquaporin membranes: Review of status and prospects," Desalination, 308, 34-40(2013). https://doi.org/10.1016/j.desal.2012.07.007
  3. Rivera-Utrilla, J., Sanchez-Polo, M., Gomez-Serrano, V., Alvarez, P. M., Alvim-Ferraz, M. C. M. and Dias, J. M., "Activated carbon modifications to enhance its water treatment applications. An overview," J. Hazard. Mater., 187(1-3), 1-23(2011). https://doi.org/10.1016/j.jhazmat.2011.01.033
  4. Hameed, B. H., Salman, J. M. and Ahmad, A. L., "Adsorption isotherm and kinetic modeling of 2,4-D pesticide on activated carbon derived from date stones," J. Hazard. Mater., 163, 121-126(2009). https://doi.org/10.1016/j.jhazmat.2008.06.069
  5. Kobya, M., Demirbas, E., Senturk, E. and Ince, M., "Adsorption of heavy metal ions from aqueous solutions by activated carbon prepared from apricot stone," Bioresour. Technol., 96, 1518-1521(2005). https://doi.org/10.1016/j.biortech.2004.12.005
  6. Grover, D. P., Zhou, J. L., Frickers, P. E. and Readman, J. W., "Improved removal of estrogenic and pharmaceutical compounds in sewage effluent by full scale granular activated carbon: Impact on receiving river water," J. Hazard. Mater., 185, 1005-1011(2011). https://doi.org/10.1016/j.jhazmat.2010.10.005
  7. Subramani, A. K., Byrappa, K., Ananda, S., Lokanatha Rai, K. M., Ranganathaiah, C. and Yoshimura, M., "Photocatalytic degradation of indigo carmine dye using $TiO_2$ impregnated activated carbon," Bull. Mater. Sci., 30, 37-41(2007). https://doi.org/10.1007/s12034-007-0007-8
  8. Yoon, K. Y., Byeon, J. H., Park, C. W. and Hwang, J., "Antimicrobial Effect of Silver Particles on Bacterial Contamination of Activated Carbon Fibers," Environ. Sci. Technol., 42, 1251-1255(2008). https://doi.org/10.1021/es0720199
  9. Crane, R. A. and Scott, T. B., "Nanoscale zero-valent iron: Future prospects for an emerging water treatment technology," J. Hazard. Mater., 211-212, 112-125(2012). https://doi.org/10.1016/j.jhazmat.2011.11.073
  10. Zhu, H., Jia, Y., Wu, X. and Wang, H., "Removal of arsenic from water by supported nano zero-valent iron on activated carbon," J. Hazard. Mater., 172, 1591-1596(2009). https://doi.org/10.1016/j.jhazmat.2009.08.031
  11. Kim, H., Hong, H.-J., Jung, J., Kim, S.-H. and Yang, J.-W., "Degradation of trichloroethylene (TCE) by nanoscale zero-valent iron (nZVI) immobilized in alginate bead," J. Hazard. Mater., 176, 1038-1043(2010). https://doi.org/10.1016/j.jhazmat.2009.11.145
  12. Liu, C., Li, X., Ma, B., Qin, A. and He, C., "Removal of water contaminants by nanoscale zero-valent iron immobilized in PAN-based oxidized membrane," Appl. Surf. Sci., 321, 158-165(2014). https://doi.org/10.1016/j.apsusc.2014.09.202
  13. Choi, H., Al-Abed, S. R., Agarwal, S. and Dionysiou, D. D., "Synthesis of Reactive Nano-Fe/Pd Bimetallic System-Impregnated Activated Carbon for the Simultaneous Adsorption and Dechlorination of PCBs," Chem. Mater., 20, 3649-3655(2008). https://doi.org/10.1021/cm8003613
  14. Tseng, H.-H., Su, J.-G. and Liang, C., "Synthesis of granular activated carbon/zero valent iron composites for simultaneous adsorption/dechlorination of trichloroethylene," J. Hazard. Mater., 192, 500-506 (2011). https://doi.org/10.1016/j.jhazmat.2011.05.047
  15. Hwang, Y., Lee, Y.-C., Mines, P. D., Huh, Y. S. and Andersen, H. R., "Nanoscale zero-valent iron (nZVI) synthesis in a Mg-aminoclay solution exhibits increased stability and reactivity for reductive decontamination," Appl. Catal. B Environ., 147, 748-755(2014). https://doi.org/10.1016/j.apcatb.2013.10.017
  16. Liu, Y., Majetich, S. A., Tilton, R. D., Sholl, D. S. and Lowry, G. V., "TCE Dechlorination Rates, Pathways, and Efficiency of Nanoscale Iron Particles with Different Properties," Environ. Sci. Technol., 39, 1338-1345(2005). https://doi.org/10.1021/es049195r
  17. Hwang, Y., Salatas, A., Mines, P. D., Jakobsen, M. H. and Andersen, H. R., "Graduated characterization method using a multi-well microplate for reducing reactivity of nanoscale zero valent iron materials," Appl. Catal. B Environ., 181, 314-320(2016). https://doi.org/10.1016/j.apcatb.2015.07.041
  18. Fu, L.-S., Jiang, J.-T., Xu, C.-Y. and Zhen, L., "Synthesis of hexagonal Fe microflakes with excellent microwave absorption performance," CrystEngComm, 14, 6827-6832(2012). https://doi.org/10.1039/c2ce25836f
  19. De Resende, V. G., De Grave, E., Da Costa, G. M. and Janssens, J., "Influence of the borohydride concentration on the composition of the amorphous Fe-B alloy produced by chemical reduction of synthetic, nano-sized iron-oxide particles: Part I: Hematite," J. Alloys Compd., 440, 236-247(2007). https://doi.org/10.1016/j.jallcom.2006.09.040
  20. Bae, S., Gim, S., Kim, H. and Hanna, K., "Effect of $NaBH_4$ on properties of nanoscale zero-valent iron and its catalytic activity for reduction of p-nitrophenol," Appl. Catal. B Environ., 182, 541-549(2016). https://doi.org/10.1016/j.apcatb.2015.10.006