DOI QR코드

DOI QR Code

나권형 모듈을 이용한 압력지연삼투 공정의 에너지생산에 관한 연구

Assessment of Power Generation by Pressure Retarded Osmosis Process from Spiral-Wound Membrane Pilot-Plant

  • 투고 : 2016.01.18
  • 심사 : 2016.08.15
  • 발행 : 2016.09.30

초록

압력지연삼투는 삼투압을 구동력으로 하여 에너지를 생산하는 새로운 막 기술이다. 압력지연삼투는 반투과성 막을 사이에 두고 삼투압으로 인해 저농도의 유입원수가 고농도의 유도용액으로 이동하는 것이다. 본 연구는 역삼투 공정의 농축수를 유도용액으로, 역삼투 공정의 생산수를 유입원수로 하여 8인치 나권형 막모듈의 성능을 평가 하였다. 실험에 사용된 유입원수와 유도용액의 유량은 2.4 L/min, 5.0 L/min, 10.0 L/min, 압력범위는 5 bar에서 30 bar이다. 유입원수와 유도용액의 농도, 유입유량, 유입비에 따른 공정 성능의 영향을 본 연구에서 확인 하였다. 중요 결과로 유도용액의 농도의 증가는 압력지연삼투 공정의 전력밀도, 투과수량을 향상시키는 결과를 보였다. 유입유량의 증가 또한 전력밀도와 투과수량을 향상시키는 결과를 보였다. 또한 최대 전력밀도를 형성하는 유입원수와 유도용액의 최적 유입비는 1:1의 비에서 나타났다.

Pressure retarded osmosis (PRO) is a quite new technique for power generation using an osmotically driven membrane process. In the PRO process, water permeates through a semipermeable membrane from a low concentration feed solution to a high concentration draw solution due to osmotic pressure. This study carried out to evaluate the performance of the 8 in spiral wound membrane module using reverse osmosis concentrate for a draw solution and reverse osmosis permeate for a feed solution. Three different flowrates of draw and feed solution, such as 2.4 L/min, 5.0 L/min, and 10.0 L/min were used to estimate the power density and water flux under various range of hydraulic pressure differences between 5 bar and 30 bar. In addition, the effects of feed and draw solution concentration, flowrate, and mixing ratio on 8 in spiral wound PRO membrane module performance were investigated in this study. As major results, increases of the draw solution concentration lead to the improvement of power denstiy, and water flux. Also, increase of flowrate resulted in the improvement of power density and water flux. In addition, optimal mixing ratio of draw and feed solution inlet flowrate was found to be 1:1 to attain a maximum power denstiy.

키워드

참고문헌

  1. Choi, Y. G., "National policy to foster renewable energy industry," News Information Chem. Eng., 26(5), 502-505(2008).
  2. REN21, "Renewables 2014 Global Status Report," pp. 1-216(2014).
  3. Loeb, S. "Production of energy from concentrated brines by pressure retarded osmosis I. Preliminary technical and economic correlations," J. Membr. Sci., 1(1), 49-63(1976). https://doi.org/10.1016/S0376-7388(00)82257-7
  4. Loeb, S., "Large-scale power production by pressure-retarded osmosis, using river water and sea water passing through spiral modules," Desalination, 355, 108-115(2002).
  5. Logan, B. E. and Elimelech, M., "Membrane-based processes for sustainable power generation using water," Nature, 488 (16), 313-319(2012). https://doi.org/10.1038/nature11477
  6. Han, G., Zhang, S., Li, X. and Chung, T. S., "High performance thin film composite pressure rtarded osmosis (PRO) membranes for renewable salinity gradient energy generation," J. Membr. Sci. 440, 108-121(2013). https://doi.org/10.1016/j.memsci.2013.04.001
  7. Altaee, A. and Sharif, A., "Pressure retarded osmosis: advancement in the process applications for power generation and desalination," Desalination, 356, 31-46(2015). https://doi.org/10.1016/j.desal.2014.09.028
  8. Lee, S. H., Choi, J. S. and Hwang, T. M. "What Can We Expect on the Next Generation Desalination Technology in the Future Civil and Environmental Engineering?," KSCE J. Civil Eng., 61(5), 102-107(2013).
  9. Kim, J. H., Kim, S. H., Kim, J. H., "Pressure Retarded Osmosis: Current Status and Future," J. Korean Soc. Environ. Eng., 36(11), 791-802(2014). https://doi.org/10.4491/KSEE.2014.36.11.791
  10. Kurihara, M. and Hanakawa, M., "Mega-ton water system: Japanese national research and development project on seawater desalination and wastewater reclamation," Desalination, 308, 131-137(2013). https://doi.org/10.1016/j.desal.2012.07.038
  11. Kim, Y. C., Kim, Y., Oh, D. and Lee, K. H., "Experimental investigation of a spiral-wound pressure-retarded osmosis membrane module for osmotic power generation," Environ. Sci. Technol., 47, 2966-2973(2013). https://doi.org/10.1021/es304060d
  12. Wang, R., Tang, C. and Fane, A. G., "Development of pressure retarded osmosis (PRO) membranes with high power density for osmotic power harvesting," In: Proceedings of the 3rd Osmosis Mebrane Summit, Statkraft, Barcelona(2012).
  13. Chou, S., Wang, R., Shi, L., She, Q., Tang, C. and Fane, A. G., "Thin film composite hollow fiver membranes for pressure retarded osmosis (PRO) process with high power density," J. Membr. Sci., 389, 25-33(2012) https://doi.org/10.1016/j.memsci.2011.10.002
  14. Achilli, A., Cath, T. Y. and Amy, E. Childress, "Power generation with pressure retarded osmosis: An experimental and theoretical investigation," J. Membr. Sci., 343, 42-52(2009). https://doi.org/10.1016/j.memsci.2009.07.006
  15. Qianhong, S., Xue, J. and Chuyang, T. Y., "Osmotic power production from salinity gradient resource by pressure retarded osmosis: Effects of operating conditions and reverse solute diffusion," J. Membr. Sci., 401-402, 262-273(2012). https://doi.org/10.1016/j.memsci.2012.02.014
  16. Efraty, A., "Pressure retarded osmosis in closed circuit without need of energy recovery," in: Proceedings of the 3rd Osmosis Mebrane Summit, Statkraft, Barcelona(2012).
  17. Lee, K. L., Baker, R. W., Lonsdale, H. K., "Membranes for power generation by pressure-retarded osmosis," J. Membr. Sci., 8, 141-171(1981). https://doi.org/10.1016/S0376-7388(00)82088-8
  18. Geankoplis, C. J., "Principles of Mass Transfer, Transport Processes and Separation Process Principles," Prenice Hall, Upper Saddle River, NJ, pp. 410-456(2003).
  19. Touati, K., Hanel, C., Tadeo, F. and Schiestel, T., "Effect of the feed and draw solution temperatures on PRO performance: Theoretical and experimental study," Desalination, 365, 182-195(2015). https://doi.org/10.1016/j.desal.2015.02.016
  20. Yip, N. Y., Tiraferri, A., Phillip, W. A., Schiffman, J. D., Hoover, L. A., Kim, Y. C. and Elimelech, M., "Thin-film composite pressure retarded osmosis membranes for sustainable power generation from salinity gradients," Environ. Sci. Technol., 45, 4360-4369(2011). https://doi.org/10.1021/es104325z