DOI QR코드

DOI QR Code

유전자알고리즘을 이용한 막오염 시계열 예측 연구

A Study on Time Series Analysis of Membrane Fouling by using Genetic Algorithm in the Field Plant

  • 이진숙 (인천광역시상수도사업본부 수질연구소) ;
  • 김준현 (인천광역시상수도사업본부 수질연구소) ;
  • 전용성 (인천광역시상수도사업본부 수질연구소) ;
  • 곽영주 (인천광역시상수도사업본부 수질연구소) ;
  • 이진효 (서울특별시보건환경연구원 대기환경연구부)
  • Lee, Jin Sook (Water Quality Institute, Waterworks Headquarters, Incheon Metropolitan City) ;
  • Kim, Jun Hyun (Water Quality Institute, Waterworks Headquarters, Incheon Metropolitan City) ;
  • Jun, Yong Seong (Water Quality Institute, Waterworks Headquarters, Incheon Metropolitan City) ;
  • Kwak, Young Ju (Water Quality Institute, Waterworks Headquarters, Incheon Metropolitan City) ;
  • Lee, Jin Hyo (Atmospheric Research Department, Seoul Metropolitan Government Research Institute of Public Health and Environment)
  • 투고 : 2016.04.21
  • 심사 : 2016.07.18
  • 발행 : 2016.08.31

초록

기존에는 lab-scale 연구에서 이론식을 기초로 막오염 모델식을 구성하였지만, 이러한 모델식은 여과, 역세, 배출이 연속적으로 이루어지는 실규모 현장에 적용하기에는 적합하지 않았다. 본 연구는 실제로 인천시 G-정수사업소에서 발생되는 배출수 처리를 위해 연속자동 운전되고 있는 침지막 공정을 대상으로 진행되었다. 정유량 조건에서 막오염 관리지표를 막간차압(Trans-Membrane Pressure, TMP)으로 결정하고 침지막 공정의 주요 운전변수인 총 투과유량과 조 내 SS농도를 독립변수로 하여 TMP의 시계열 예측을 시도하고 예측 가능성 및 적용성을 평가하였다. 유전자알고리즘을 이용한 시계열 예측모형을 구성한 결과, TMP 예측값이 펄스주기 형태와 경시적인 증가 추세 두 가지를 모두 반영하고 있어서 만족할 만한 결과가 나왔다. 두 번의 검증 결과, 선형회귀 방식으로 TMP 실측치와 예측치의 상관성(유의성)을 나타내면 각각 $r^2=0.721$, $r^2=0.928$ 수준이다. 본 연구에서는 하절기 자료를 활용하여 모델링 작업을 수행하였지만 추후에 연속자료가 더 쌓이면 같은 절차로 모델링 작업을 반복해서 더 높은 신뢰도의 예측모형을 구성할 수 있고 이를 실제 현장에 적용하여 2~3일 정도의 단기예측을 수행한다면 실제로 막공정을 에너지 효율적으로 운영하는데 도움이 될 것으로 사료된다.

Most research on membrane fouling models in the past are based on theoretical equations in lab-scale experiments. But these studies are barely suitable for applying on the full-scale spot where there is a sequential process such as filtration, backwash and drain. This study was conducted in submerged membrane system which being on operation auto sequentially and treating wastewater from G-water purification plant in Incheon. TMP had been designated as a fouling indicator in constant flux conditions. Total volume of inflow and SS concentration are independent variables as major operation parameters and time-series analysis and prediction of TMP were conducted. And similarity between simulated values and measured values was assessed. Final prediction model by using genetic algorithm was fully adaptable because simulated values expressed pulse-shape periodicity and increasing trend according to time at the same time. As results of twice validation, correlation coefficients between simulated and measured data were $r^2=0.721$, $r^2=0.928$, respectively. Although this study was conducted limited to data for summer season, the more amount of data, better reliability for prediction model can be obtained. If simulator for short range forecast can be developed and applied, TMP prediction technique will be a great help to energy efficient operation.

키워드

참고문헌

  1. Kim, B. G., "Prediction of membrane fouling by using flux decline model in microfiltration," University of Seoul(2011).
  2. Kim, D. C., "Membrane fouling models for activated sludge cakes," Membr. J., 24(3), 249-257(2014). https://doi.org/10.14579/MEMBRANE_JOURNAL.2014.24.3.249
  3. Kaneko, H. and Funatsu, K., "Physical and statistical model for predicting a transmembrane pressure jump for a membrane bioreactor," Chemometr. Intell. Lab., 121, 66-74(2013). https://doi.org/10.1016/j.chemolab.2012.11.013
  4. Hermans, P. H. and Bredee, H. L., "Principles of the mathematical treatment of constant pressure filtration," J. Soc. Chem. Ind., 55, 1(1936). https://doi.org/10.1002/jctb.5000550101
  5. Michael, J. M. and Orr, C., "Filtration: principles and practices," Marcel Dekker Inc., New York, pp. 135-139(1987).
  6. Hermia, J., "Constant pressure blocking filtration laws-application to power-law non-newtonian fluids," Trans. Inst. Chem. Eng., 60, 183(1982).
  7. Ho, C. C. and Zydney, A. L., "Transmembrane pressure profiles during constant flux : microfiltration of bovine serum albumin," J. Membr. Sci., 209(2), 363-377(2002). https://doi.org/10.1016/S0376-7388(02)00282-X
  8. Yuan, W., Kocic, A. and Zydney, A. L., "Analysis of humic acid fouling during microfiltration using a pore blockagecake filtration model," J. Membr. Sci., 198(1), 51-62(2002). https://doi.org/10.1016/S0376-7388(01)00622-6
  9. Chllam, S. and Xu, W., "Blocking laws analysis of dead-end constant flux microfiltration of compressible cakes," J. Colloid. Interf. Sci., 301(1), 248-257(2006). https://doi.org/10.1016/j.jcis.2006.04.064
  10. Chellam, S. and Cogan, N. G., "Colloidal and bacterial fouling during constant flux microfiltration: comparison of classical blocking laws with a unified model combining pore blocking and EPS secretion," J. Membr. Sci., 382(1), 148-157 (2011). https://doi.org/10.1016/j.memsci.2011.08.001
  11. Aidan, A., Abdel-Jabbar, N., Ibrahim, T. H., Nenov, V. and Mjalli, F., "Neural network modeling and optimization of scheduling backwash for membrane bioreactor," Clean Technol. Environ. Policy, 10(4), 389-395(2007). https://doi.org/10.1007/s10098-007-0129-0
  12. Libotean, D., Giralt, J., Rallo, R., Wolfe, T. and Cohen, Y., "Neural network approach for modeling the performance of reverse osmosis membrane desalting," J. Membr. Sci., 326(6), 408-419(2009). https://doi.org/10.1016/j.memsci.2008.10.028
  13. Moradi, A., Mojarradi, V. and Sarcheshmehpour, M., "Prediction of RO membrane performances by use of artificial neural network and using the parameters of a complex mathematical model," Res. Chem. Intermediates, 39(7), 3235-3249(2012). https://doi.org/10.1007/s11164-012-0835-z
  14. Hwang, T. M., Choi, Y., Nam, S. H., Lee, S., Oh, H., Hyun, K. and Chong, Y. K., "Prediction of membrane fouling rate by neural network modeling," Desalination and Water, 15(1/3), 134-140(2010). https://doi.org/10.5004/dwt.2010.1677
  15. Jung, H. W., "A Study on the Improvement of Recovery Rate, Modeling and Economical Control in the UF/RO Process for Wastewater Reuse," University of Seoul(2013).
  16. Kim, J., H., "A study about treatment for water treatment residual sludge using submerged membrane system," J. Korean Soc. Water and Wastewater, 28(2), 181-193(2014). https://doi.org/10.11001/jksww.2014.28.2.181
  17. Ha, S. J., "Presupposing the water qaulity of Youngsan River by combined Method of Genetic Algorithm and Neural Network," Dongshin University(2003).
  18. Parneet, P., "Development and testing of a fully adaptable membrane bioreactor fouling model for a sidestream confiquration system," Membranes, 3(2), 24-43(2013). https://doi.org/10.3390/membranes3020024
  19. Gianpaolo, S. M. F. and Alessandro, S., "Online monitoring of MBR fouling by transmembrane pressure and permeability over a long-term experiment," Sep. Purific. Technol., 122, 297-305(2014). https://doi.org/10.1016/j.seppur.2013.11.022
  20. Otok, B. W. and Suhartono, "Development of rainfall forecasting model in Indonesia by using ASTAR, transfer function, and ARIMA methods," Eur. J. Sci. Res., 38(3), 386-395 (2009).