DOI QR코드

DOI QR Code

미세기포를 이용한 퇴적물 정화

Remediation of Sediments using Micro-bubble

  • 강상율 (서울대학교 건설환경공학부) ;
  • 김형준 (서울대학교 건설환경공학부) ;
  • 김충일 (서울대학교 건설환경종합연구소) ;
  • 박현주 (서울대학교 건설환경종합연구소) ;
  • 나춘기 (목포대학교 환경공학과) ;
  • 한무영 (서울대학교 건설환경공학부)
  • Kang, Sang Yul (Department of Civil and Environmental Engineering, Seoul National University) ;
  • Kim, Hyoung Jun (Department of Civil and Environmental Engineering, Seoul National University) ;
  • Kim, Tschung Il (Institute of Construction and Environmental Engineering, Seoul National University) ;
  • Park, Hyun Ju (Institute of Construction and Environmental Engineering, Seoul National University) ;
  • Na, Choon Ki (Department of Environmental Engineering, Mokpo National University) ;
  • Han, Moo Young (Department of Civil and Environmental Engineering, Seoul National University)
  • 투고 : 2016.01.03
  • 심사 : 2016.07.18
  • 발행 : 2016.08.31

초록

본 연구는 미세기포를 이용하여 하천 및 호수의 퇴적물 내 영양염류 제어 가능성을 살펴보고자 하였다. 이를 위해 실제 호수에서 퇴적물을 채취하여 용출 특성 실험 및 기포를 이용한 퇴적물 및 영양염류 제거 실험을 수행하였다. 연구에 사용된 퇴적물의 입도분석 결과, 점토와 실트(<0.075 mm)비율은 약 7.7%, 모래(0.075~4.75 mm)는 약 67.8%, 자갈은(${\geq}4.75mm$) 약 24.5%로 나타났다. 총질소(T-N), 총인 (T-P), 강열감량은 각각 2,790~3,260 mg/kg, 261~311 mg/kg, 4.1~9.6%로 나타났다. 퇴적물의 입도별 T-N과 T-P을 분석한 결과, 입도가 클수록 퇴적물의 T-N와 T-P 함량은 감소하는 경향을 나타냈다. 이는 입도가 클수록 비표면적이 작아져 흡착되는 오염물질량이 줄어들기 때문으로 판단된다. 기포의 특성에 따른 퇴적물의 제거효율을 분석한 결과, 압력 6기압, 순환률 30%, 응집제 주입량 15 ppm의 조건으로 실험을 수행하였을 때 퇴적물의 제거율이 19.9%로 가장 높게 나타났다. 이 때의 T-N, T-P의 제거효율도 21.4, 22.6%로 가장 높게 나타났다. 운전조건을 고정시키고 기포 주입횟수를 증가시키면서 T-N과 T-P의 제거효율을 살펴본 결과, 주입횟수 2회까지 T-N과 T-P의 제거효율은 높았으나, 3회부터는 제거효율이 낮아짐에 따라 주입횟수가 증가하더라도 제거효율에는 큰 변화를 보이지 않았다. 그리고 미세입자가 제거된 퇴적물의 영양염류 용출량은 미세입자를 제거하지 않은 퇴적물의 용출량보다 약 20.1~64.3% 정도 감소함을 알 수 있었다. 이를 통해 미세기포를 퇴적물에 반복적으로 주입하는 방안은 퇴적물 및 퇴적물에서의 영양염류 용출을 제어하는 효과적인 방안으로써 가능성이 있음을 확인할 수 있었다.

This study was conducted on the sediment remediation using micro-bubble to remove fine particles. For this study, characteristics of contamination and release in sediment were analyzed. And then, the characteristics of bubbles on removal efficiency was investigated at various operation conditions. In particle size distribution of the sediment used for the study, the proportion of clay and silt (<0.075 mm) was about 7.7%, sand (0.075~4.75 mm) was about 67.8%, and gravel (${\geq}4.75$) was 24.5%. Total nitrogen (TN) and total phosphorus (TP) of the sediment were 2,790~3,260, 261~311 mg/kg respectively. Ignition loss and water content were 4.1~9.6, 32.9~53.2% respectively. In analysis of removal efficiency according to operation conditions of micro-bubble, it was the highest when operation condition is pressure 6 atm, pressurized water ratio 30%, and coagulant dosage 15 ppm. At the time, the sediment's removal efficiency was 19.9%. Accordingly removal efficiency of TN and TP were 21.4, 22.6% respectively. Finally a research was found that fine particles in sediment were almost removed by micro-bubble, which led to decrease nutrients' release at about 20.1~64.3% in comparison to sediment including lots of fine particles.

키워드

참고문헌

  1. Eggleton, J. and Thomas, K. V., "A review of factors affecting the release and bioavailability of contaminants during sediment disturbance events," Environ. Int., 30(7), 973-980 (2004). https://doi.org/10.1016/j.envint.2004.03.001
  2. Teixeira, M. R., Sousa, V. and Rosa, M. J., "Investigating dissolved air flotation performance with cyanobacterial cells and filaments," Water Res., 44(11), 3337-3344(2010). https://doi.org/10.1016/j.watres.2010.03.012
  3. Dupre, V., Ponasse, M., Aurelle, Y. and Secq, A., "Bubble formation by water release in nozzles - I. Mechanisms," Water Res., 32(8), 2491-2497(1998). https://doi.org/10.1016/S0043-1354(97)00435-1
  4. Edzwald, J. K., "Dissolved air flotation and me," Water Res., 44(7), 2077-2106(2010). https://doi.org/10.1016/j.watres.2009.12.040
  5. Larsen, D. P., Malueg, K. W., Schults, D. W. and Brice, R. M., "Response to Eutrophic Shagawa Lake, Minnesota, U. S. A., to Point-Source, Phosphorus Reduction," Verhandlungen Inter. Vereinigung Limnol., 19, 884-892(1975).
  6. Newell, R. C., Seiderer, L. J. and Hitchcock, D. R., "The impact of dredging works in coastal waters: a review of the sensitivity to disturbance and subsequent recovery of biological resources on the sea bed," Oceanogr. Mar. Biol.: An Annual Rev., 36, 127-178(1998).
  7. Bare, W. R., Jones, N. B. and Middlebrooks, E. J., "Algae removal using dissolved air flotation," J. Water Pollut. Control Fed., 47(1), 153-169(1975).
  8. Koivunen, J. and Heinonen-Tanski, H., "Dissolved air flotation (DAF) for primary and tertiary treatment of municipal wastewaters," Environ. Technol., 29(1), 101-109(2008). https://doi.org/10.1080/09593330802009410
  9. Andrieux-Loyer, F. and Aminot, A., "Phosphorus forms related to sediment grain size and geochemical characteristics in French coastal areas," Estuarine, Coastal and Shelf Sci., 52(5), 617-629(2001). https://doi.org/10.1006/ecss.2001.0766
  10. Selig, U., "Particle size-related phosphate binding and Prelease at the sediment-water interface in a shallow German lake," Hydrobiol., 492(1-3), 107-118(2003). https://doi.org/10.1023/A:1024865828601
  11. Kemp, W. M., Sampou, P., Caffrey, J., Mayer, M., Henriksen, K. and Boynton, W. R., "Ammonium recycling versus denitrification in Chesapeake Bay sediments," Limnol. Oceanogr., 35(7), 1545-1563(1990). https://doi.org/10.4319/lo.1990.35.7.1545
  12. Sondergaard, M., Jensen, P. J. and Jeppesen, E., "Retention and internal loading of phosphorus in shallow, eutrophic lakes," The Scientific World J., 1, 427-442(2001). https://doi.org/10.1100/tsw.2001.72
  13. Min, Y.-H., Hyun, D.-Y., Eum, C.-H., Chung, N.-H., Kang, S.-W. and Lee, S.-H., "A study on the relationship between concentration of phosphorus, turbidity, and pH in water and soil," Anal. Sci. Technol., 24(4), 304-309(2011). https://doi.org/10.5806/AST.2011.24.4.304