DOI QR코드

DOI QR Code

Dechlorination/Solidification of LiCl Waste by Using a Synthetic Inorganic Composite with Different Compositions

합성무기복합체 조성변화에 따른 모의 LiCl 염폐기물의 탈염소화/고형화

  • Received : 2016.05.16
  • Accepted : 2016.07.26
  • Published : 2016.09.30

Abstract

Waste salt generated from a pyro-processing for the recovery of uranium and transuranic elements has high volatility at vitrification temperature and low compatibility in conventional waste glasses. For this reason, KAERI (Korea Atomic Energy Research Institute) suggested a new method to de-chlorinate waste salt by using an inorganic composite named SAP ($SiO_2-Al_2O_3-P_2O_5$). In this study, the de-chlorination behavior of waste salt and the microstructure of consolidated form were examined by adding $B_2O_3$ and $Fe_2O_3$ to the original SAP composition. De-chlorination behavior of metal chloride waste was slightly changed with given compositions, compared with that of original SAP. In the consolidated forms, the phase separation between Si-rich phase and P-rich phase decreases with the amount of $Al_2O_3$ or $B_2O_3$ as a connecting agent between Si and P-rich phase. The results of PCT (Product Consistency Test) indicated that the leach-resistance of consolidated forms out of reference composition was lowered, even though the leach-resistance was higher than that of EA (Environmental Assessment) glass. From these results, it could be inferred that the change in the content of Al or B in U-SAP affected the microstructure and leach-resistance of consolidated form. Further studies related with correlation between composition and characteristics of wasteform are required for a better understanding.

파이로 공정에서 발생되는 염폐기물은 휘발성이 높아 고온공정에 적용하기 어려우며, 폐기물내에 존재하는 염소로 인해, 전통적인 유리매질에 대한 상용성이 낮은 특성을 가지고 있어, 새로운 고화방법이 필요하다. KAERI에서는 탈염소화법을 이용하여 염소를 탈리하고, 일반적인 유리매질에 고화하는 연구방법을 제안하였다. 본 연구에서는 기존의 탈염소화법에 사용된 합성무기복합체(SAP, $SiO_2-Al_2O_3-P_2O_5$)에 첨가물로서, $Fe_2O_3$$B_2O_3$를 부가하여 5성분계의 복합체를 제조하고, 조성에 따른 탈염소화반응 및 고화체의 특성을 조사하였다. 탈염소화 반응은 조성에 따른 생성물의 변화 경향은 크지 않았으며, 유사한 반응메커니즘으로 주어진 시간 내에 반응이 진행되는 것으로 나타났다. Si-rich phase와 P-rich phase를 화학적으로 연결시켜주는 $Al_2O_3$$B_2O_3$의 함량이 높은 경우에는 고화체내 상분리의 정도는 상대적으로 낮게 나타나며, 구성원소의 분포가 보다 균일한 형태를 보였다. PCT-A 침출시험법을 통한 조성에 따른 내구성의 평가결과, 기준조성을 벗어나는 경우에는 내침출성이 낮게 나타났으나, EA glass(Environmental Assessment glass)의 값보다는 우수한 것으로 확인되었다. 이상의 결과로 부터, 주어진 적정 Si와 P의 조성분율하에서, Al과 B의 함량변화는 고화체의 미세구조와 내침출성에 영향을 주는 것을 확인할 수 있었으며, 미세구조와 내침출성의 연관관계에 대한 추가적인 연구가 필요할 것으로 판단된다.

Keywords

References

  1. H.S. Lee, G.I. Park, K.H. Kang, J.M. Hur, J.G. Kim, D.H. Ahn, Y.Z. Cho, and E.H. Kim, "Pyroprocessing Technology Development at KAERI", Nucl. Eng. Technol., 43(4), 317-328 (2011). https://doi.org/10.5516/NET.2011.43.4.317
  2. H.C. Eun, J.H. Choi, T.K. Lee, I.H. Cho, N.Y. Kim, J.U. Yu, H.S. Park, and D.H. Ahn, "Separation Characteristics of $NdCl_3$ from LiCl-KCl Eutectic Salt in a Reactive Distillation Process using $Li_2CO_3$ or $K_2CO_3$", J. Nucl. Fuel Cycle Waste Technol., 13(3), 181-186 (2015). https://doi.org/10.7733/jnfcwt.2015.13.3.181
  3. Y.Z. Cho, T.K. Lee, H.C. Eun, J.H. Choi, I.T. Kim, and G.I. Park, "Purification of used Eutectic (LiCl-KCl) Salt Electrolyte from Pyroprocessing", J. Nucl. Mater., 437(1-3), 47-54 (2013) https://doi.org/10.1016/j.jnucmat.2013.01.344
  4. G. Leturcq, A. Grandjean, D. Rigaud, P. Perouty, and M. Charlot, "Immobilization of Fission Products Arising from Pyrometallurgical Reprocessing in Chloride Media", J. Nucl. Mater., 347(1-2), 1-11 (2005). https://doi.org/10.1016/j.jnucmat.2005.06.026
  5. B.L. Meltcalfe and I.W. Donald, "Candidate Wasteforms for the Immobilization of Chloride-Containing Radioactive Waste", J. Non-Cryst. Solids, 348, 225-229 (2004). https://doi.org/10.1016/j.jnoncrysol.2004.08.173
  6. Y.G. Lavrinovich, M.V. Kormilitsyn, V.I. Konovalov, I.V. Tselishchev, S.V. Tomilin, and V.M. Chistyakov, "Vitrification of Chloride Waste in the Pyroelectrochemical Method of Reprocessing Irradiated Nuclear Fuel", At. Energy, 95(5), 781-785 (2003). https://doi.org/10.1023/B:ATEN.0000016764.68862.5f
  7. Y.G. Lavrinovich, M.A. Kuzin, M.V. Kormilitsyn, S.V. Tomilin, E.Y. Gribakin, and L.V. Zakharova, "Combined Vitrification of Chloride and Phosphate Wastes by Pyroelectrochemical Reprocessing of Nuclear Fuel", At. Energy, 101(6), 894-896 (2006). https://doi.org/10.1007/s10512-006-0187-0
  8. D. Lexa, L. Leibowitz, and J. Kropf, "On the Reactive Occlusion of the (uranium trichloride + lithium chloride + potassium chloride) Eutectic Salt in Zeolite 4A", J. Nucl. Mater., 279(1), 57-64 (2000). https://doi.org/10.1016/S0022-3115(99)00279-2
  9. M. Lambregts and S.M. Frank, "Characterization of Cesium containing Glass-bonded Ceramic Waste Forms", Micropor. Mesopor. Mater., 64(1-3), 1-9 (2003). https://doi.org/10.1016/S1387-1811(03)00486-4
  10. W.L. Ebert, M.A. Lewis, and S.G. Johnson, "The Precision of Product Consistency Tests Conducted with a Glass-bonded Ceramic Waste Form", J. Nucl. Mater., 305(1), 37-51 (2002). https://doi.org/10.1016/S0022-3115(02)00913-3
  11. L.R. Morss, M.A. Lewis, M. K. Lichmann, and D. Lexa, "Cerium, Uranium, and Plutonium Behavior in Glass-bonded Sodalite, a Ceramic Nuclear Waste Form", J. Alloys Compd., 303-304, 42-48 (2000). https://doi.org/10.1016/S0925-8388(00)00601-0
  12. M.K. Richmann, D.T. Reed, A.J. Kropf, S.B. Aase, and M.A. Lewis, "EXAFS/XANES Studies of Plutonium-loaded Sodalite/Glass Waste Forms", J. Nucl. Mater., 297(3), 303-312 (2001). https://doi.org/10.1016/S0022-3115(01)00637-7
  13. S. Donze, L. Montagne, and G. Palavit, "Thermal Conversion of Heavy Metal Chlorides ($PbCl_2$, $CdCl_2$) and Alkaline Chlorides (NaCl, KCl) into Phosphate Glasses", Chem. of Mater., 12(7), 1921-1925 (2000). https://doi.org/10.1021/cm991205d
  14. H.S. Park, I.T. Kim, H.Y. Kim, S.K. Ryu, and J.H. Kim, "Stabilization/Solidification of Radioactive Molten Salt Waste via Gel-Route Pretreatment", Environ. Sci. Technol., 41(4), 1345-1351 (2007). https://doi.org/10.1021/es0615472
  15. H.S. Park, I.T. Kim, Y.J. Cho, H.C. Eun, and H.S. Lee, "Stabilization/Solidification of Radioactive Salt Waste by Using $xSiO_2-yAl_2O_3-zP_2O_5$ (SAP) Material at Molten Salt State", Environ. Sci. Technol., 42(24), 9357-9362 (2008). https://doi.org/10.1021/es802012x
  16. H.S. Park, I.T. Kim, Y.J. Cho, H.C. Eun, and J.H. Kim, "Characteristics of Solidified Products containing Radioactive Molten Salt Waste", Environ. Sci. Technol., 41(21), 7536-7542 (2007). https://doi.org/10.1021/es0712524
  17. H.S. Park, I.H. Cho, H.C. Eun, I.T. Kim, Y.J. Cho, and H.S. Lee, "Characteristics of Wasteform Composing of Phosphate and Silicate To Immobilize Radioactive Waste Salts", Environ. Sci. Technol., 45(5), 1932-1939 (2011). https://doi.org/10.1021/es1029975
  18. I.W. Donald, B.L. Metcalfe, S.K. Fong, and L.A. Gerrard, "The Influence of $Fe_2O_3$ and $B_2O_3$ Additions on the Thermal Properties, Crystallization Kinetics and Durability of a Sodium Aluminum Phosphate Glass", J. Non-Cryst. Solids., 352(28-29), 2993-3001 (2006). https://doi.org/10.1016/j.jnoncrysol.2006.04.007

Cited by

  1. An experimental study on Sodalite and SAP matrices for immobilization of spent chloride salt waste vol.499, pp.None, 2016, https://doi.org/10.1016/j.jnucmat.2017.11.051
  2. Inorganic Waste Forms for Efficient Immobilization of Radionuclides vol.1, pp.8, 2016, https://doi.org/10.1021/acsestengg.1c00184