DOI QR코드

DOI QR Code

동적 계획 알고리즘을 이용한 효과적인 케이블 드럼 스케줄 및 자동화 프로그램 구현

Implementation of Automation Program and Efficient Cable Drum Schedule using Dynamic Programming Algorithm

  • Park, Ki-Hong (Division of Convergence Computer & Media, Mokwon University) ;
  • Lee, Yang Sun (Division of Convergence Computer & Media, Mokwon University)
  • 투고 : 2016.07.22
  • 심사 : 2016.08.25
  • 발행 : 2016.08.31

초록

케이블 드럼 스케줄은 발전소 전기설비 설계를 위한 최종단계로 레이스웨이에 포설 계획된 케이블들을 효율적으로 케이블 드럼에 할당하는 것이다. 본 논문에서는 케이블들을 코드별로 케이블 드럼 용량에 맞게 스케줄링 하는 자동화 프로그램을 구현하였으며, 케이블 드럼 스케줄을 위한 최적화 문제를 효과적으로 해결하기 위해 동적 계획 알고리즘을 적용하였다. 구현 결과 케이블 드럼 스케줄 자동화는 설계 규격대로 수행됨을 확인할 수 있었고, 기존방법에서 발생되는 케이블 부족 및 낭비와 같은 오류를 제거 및 케이블 드럼 스케줄 소요시간을 줄일 수 있었다. 발전소 전기설비를 위한 케이블은 최소 2만개 이상으로 설계되기 때문에 제안하는 자동화 프로그램을 적용한다면 심각한 오류 없이 케이블 드럼 스케줄의 설계 소요시간을 현저히 줄일 수 있을 것으로 사료된다.

Cable drum schedule is the final step for the electrical equipment of the power plant, and is assigned cables to efficiently cable drum. In this paper, we have implemented an automated program which cables are scheduled in accordance with the capacity of the cable drum for each cable code. Proposed cable drum schedule was applied to the dynamic programming algorithm to effectively solve the optimization problem, and the implemented program is conducted so as to verify the proposed model. The experiment results show that implemented program eliminates the errors that can occur existing method, so we were able to reduce the design time of cable drum schedule. Cables for the electrical equipment of the power plant is designed to at least 2 million units or more. Thus the automation program to provide applies, it is considered that the design time of the cable drum schedule can be greatly reduced without serious error.

키워드

참고문헌

  1. IEEE Std. 1185-1994, IEEE Guide for Installation Methods for Generating Station Cables, IEEE Power and Energy Society, New York, NY, 2002.
  2. National Fire Protection Association and Delmar, NEC 2011 Handbook, 12th edition, NFPA Publication, Dec. 2010.
  3. K. H. Park, A. N. Kang, H. B. Choi, and Y. S. Lee, "Implementation of Efficient Cable Spreading Algorithm and Automation Program for Electrical Equipment in Power Plant," Journal of the Korea Institute of Information and Communication Engineering, vol. 18, no. 9, pp. 2229-2236, Sep. 2014. https://doi.org/10.6109/jkiice.2014.18.9.2229
  4. K. H. Park, and Y. S. Lee, "Automated Cable Route Design based Flexible Cable Fill Check of Raceway in Cable Spreading of Generating Station," Journal of the Korea Institute of Information and Communication Engineering, vol. 20, no. 3, pp. 607-624, Mar. 2016. https://doi.org/10.6109/jkiice.2016.20.3.607
  5. IEEE Std. 422-2012, IEEE Guide for the Design of Cable Raceway Systems for Electric Generating Facilities, IEEE Power and Energy Society, New York, NY, 2013.
  6. IEEE Std. 690-2004, IEEE Standard for the Design and Installation of Cable Systems for Class 1E Circuits in Nuclear Power Generating Stations, Power Generation Committee of the IEEE and Power Engineering Society, New York, NY, 2005.
  7. S. S. Lee, and J. W. Jang, "Development of M2M Simulator for Mobile Network using Knapsack Algorithm," Journal of the Korea Institute of Information and Communication Engineering, vol. 17, no. 11, pp. 2661-2667, Nov. 2013. https://doi.org/10.6109/jkiice.2013.17.11.2661
  8. Richard Neapolitan, and Kumarss Naimipour, Foundations of Algorithms, 2th ed. Miami, MA: Jones and Bartlett, 1998.
  9. Wikipedia. Knapsack problem [Internet]. Available: https://en.wikipedia.org/wiki/Knapsack_problem/.