DOI QR코드

DOI QR Code

G-vector-valued Sequence Space Frames

  • Osgooei, Elnaz (Department of Sciences, Urmia University of Technology)
  • 투고 : 2014.08.05
  • 심사 : 2016.07.06
  • 발행 : 2016.09.23

초록

G-vector-valued sequence space frames and g-Banach frames for Banach spaces are introduced and studied in this paper. Also, the concepts of duality mapping and ${\beta}$-dual of a BK-space are used to define frame mapping and synthesis operator of these frames, respectively. Finally, some results regarding the existence of g-vector-valued sequence space frames and g-Banach frames are obtained. In particular, it is proved that if X is a separable Banach space and Y is a Banach space with a Schauder basis, then there exist a Y-valued sequence space $Y_v$ and a g-Banach frame for X with respect to Y and $Y_v$.

키워드

참고문헌

  1. M. R. Abdollahpour and M. H. Faroughi, Pg-frames in Banach spaces, Methods Funct. Anal. Topology, 13(3)(2007), 201-210.
  2. P. G. Casazza, O. Christensen and D. T. Stoeva, Frame expansions in separable Banach spaaces, J. Math. Anal. Appl., 307(2)(2005), 710-723. https://doi.org/10.1016/j.jmaa.2005.02.015
  3. P. G. Casazza, D. Han and D. R. Larson, Frames for Banach spaces, Contemp. Math., 247(1999), 149-182. https://doi.org/10.1090/conm/247/03801
  4. O. Christensen and D. T. Stoeva, P-frames in separable Banach spaces, Adv. Comput. Math., 18(2-4)(2003), 117-126. https://doi.org/10.1023/A:1021364413257
  5. I. Daubechies, Ten lectures on wavelets, SIAM, Philadelphia, PA, 1992.
  6. S. S. Dragomir, Semi-inner products and applications, Nova Science, Hauppauge, NY, 2004.
  7. M. H. Faroughi and E. Osgooei, Continuous p-Bessel mappings and continuous p-frames in Banach spaces, Involve, a journal of mathematics, 4(2)(2011), 631-643.
  8. K. Grochenig, Describing functions: Atomic decompositions vesus frames, Monatsh. Math., 112(1)(1991), 1-42. https://doi.org/10.1007/BF01321715
  9. H. G. Heuser, Functional analysis, Wiley, New York, 1982.
  10. D. T. Stoeva, Generalization of the frame operator and the canonical dual frame to Banach spaces, Asian-European Journal of Mathematics, 1(4)(2008), 631-643. https://doi.org/10.1142/S1793557108000497
  11. S. Suantai and W. Sanhan, On $\beta$-dual of vector-valued sequence spaces of Maddox, Int. J. Math. Sci., 30(7)(2002), 383-392. https://doi.org/10.1155/S0161171202012772
  12. W. Sun, G-frames and g-Riesz bases, J. Math. Anal. Appl., 322(1)(2006), 437-452. https://doi.org/10.1016/j.jmaa.2005.09.039