DOI QR코드

DOI QR Code

Reconfiguring k-colourings of Complete Bipartite Graphs

  • Received : 2015.07.04
  • Accepted : 2016.07.06
  • Published : 2016.09.23

Abstract

Let H be a graph, and $k{\geq}{\chi}(H)$ an integer. We say that H has a cyclic Gray code of k-colourings if and only if it is possible to list all its k-colourings in such a way that consecutive colourings, including the last and the first, agree on all vertices of H except one. The Gray code number of H is the least integer $k_0(H)$ such that H has a cyclic Gray code of its k-colourings for all $k{\geq}k_0(H)$. For complete bipartite graphs, we prove that $k_0(K_{\ell},r)=3$ when both ${\ell}$ and r are odd, and $k_0(K_{\ell},r)=4$ otherwise.

Keywords

References

  1. S. Bard, Colour graphs of complete multipartite graphs, M.Sc. Thesis, University of Victoria, Victoria, BC, Canada, 2014.
  2. J. A. Bondy and U. S. R. Murty, Graph Theory, GTM 224, Springer, Berlin, 2008.
  3. P. Bonsma and L. Cereceda, Finding paths between graph colourings: PSPACEcompleteness and superpolynomial distances, Theoretical Computer Science, 410(2009), 5215-5226. https://doi.org/10.1016/j.tcs.2009.08.023
  4. L. Cereceda, J. van den Heuvel and M. Johnson, Connectedness of the graph of vertex colourings, Discrete Math., 308(2008), 913-919. https://doi.org/10.1016/j.disc.2007.07.028
  5. L. Cereceda, J. van den Heuvel and M. Johnson, Mixing 3-colourings in bipartite graphs, European J. Combin., 30(2009), 1593-1606. https://doi.org/10.1016/j.ejc.2009.03.011
  6. L. Cereceda, J. van den Heuvel and M. Johnson, Finding Paths Between 3-Colorings, J. Graph Theory, 67(2011), 69-82. https://doi.org/10.1002/jgt.20514
  7. K. Choo and G. MacGillivray, Gray code numbers for graphs, Ars Math. Contemp., 4(2011), 125-139.
  8. M. Dyer, A. Flaxman, A. Frieze and E. Vigoda, Randomly coloring sparse random graphs with fewer colors than the maximum degree, Random Structures Algorithms, 29(2006), 450-465. https://doi.org/10.1002/rsa.20129
  9. S. Finbow and G. MacGillivray, Hamiltonicity of Bell and Stirling Colour Graphs, manuscript 2014.
  10. R. Haas, The canonical coloring graph of trees and cycles, Ars Math. Contemp., 5(2012), 149-157.
  11. T. Ito, K. Kawamura, H. Ono, and X. Zhou, Reconfiguration of list L(2, 1)- labelings in a graph, Theoretical Computer Science, 9702(2014), DOI: 10.1016/j.tcs.2014.04.011.
  12. M. Jerrum, A very simple algorithm for estimating the number of k-colorings of a low-degree graph, Random Structures Algorithms, 7(1995), 157-165. https://doi.org/10.1002/rsa.3240070205
  13. B. Lucier and M. Molloy, The Glauber dynamics for colorings of bounded degree trees, SIAM J. Disc. Math., 25(2011), 827-853. https://doi.org/10.1137/090779516
  14. C. Savage and P. Winkler, Montone Gray codes and the middle levels problem, J. Combin. Theory Ser. A, 70(1995), 230-248. https://doi.org/10.1016/0097-3165(95)90091-8

Cited by

  1. Reconfiguring dominating sets in some well-covered and other classes of graphs vol.340, pp.8, 2017, https://doi.org/10.1016/j.disc.2017.03.007
  2. Connectivity and Hamiltonicity of Canonical Colouring Graphs of Bipartite and Complete Multipartite Graphs vol.11, pp.4, 2018, https://doi.org/10.3390/a11040040
  3. Introduction to Reconfiguration vol.11, pp.4, 2018, https://doi.org/10.3390/a11040052