DOI QR코드

DOI QR Code

Synthesis and Thermal Characteristics of Nano-Aluminum/Fluorinated Polyurethane Binders

나노 알루미늄/불소 함유 폴리우레탄 결합제의 합성 및 열적 특성 연구

  • Received : 2016.08.01
  • Accepted : 2016.09.12
  • Published : 2016.10.01

Abstract

Energetic plasticizers containing explosophore groups such as $-NO_2$, $-ONO_2$, and $-N_3$ group are susceptible to impact, shock, heat, etc, finally deteriorating the insensitivity of PBXs. In this study, in an attempt to investigate the feasibility of replacing sensitive explosophore groups to fundamentally inactive but potentially (latent) energetic fluorine group which was known to have an exothermic thermite reaction with aluminum, nano-aluminum/fluorinated polyurethane binders were prepared by simultaneous polyurethane and catalyst-free azide-alkyne click reaction in the presence of nano-aluminum. Thermal characteristics of nano-aluminum/fluorinated polyurethane binders were monitored by using DSC with high pressure crucible pan.

현재 적용되고 있는 에너지화 가소제는 $-NO_2$, $-ONO_2$$-N_3$와 같은 에너지화 활성 그룹을 포함하고 있어서 충격, 쇼크, 열 등 외부환경에 상당히 민감하여 복합화약의 둔감 안정성을 취약하게 한다. 본 연구에서는 민감한 에너지화 활성 그룹이 아니라 근본적으로는 비활성 그룹으로 복합화약의 민감도에는 영향을 미치지 않지만, 복합화약의 반응 시에 테르밋반응에 의해 추가적인 에너지를 발생할 수 있는 불소계 반응성 가소제를 적용한 폴리우레탄 결합제를 클릭반응으로 합성하고 나노 알루미늄과의 테르밋반응에 대한 열적 특성을 고찰하였다.

Keywords

References

  1. Bohn, M.A., "Determination of the Kinetic Data of the Thermal Decomposition of Energetic Plasticizers and Binders by Adiabatic Self Heating," Thermochimica Acta, Vol. 337, No. 1-2, pp. 121-139, 1999. https://doi.org/10.1016/S0040-6031(99)00150-1
  2. Chen, Y., Kwon, Y. and Kim, J.S., "Synthesis and Characterization of Bis(2,2-dinitropropyl ethylene) Formal Plasticizer for Energetic Binders," Journal of Industrial and Engineering Chemistry, Vol. 18, No. 3, pp. 1069-1075, 2012. https://doi.org/10.1016/j.jiec.2011.12.006
  3. Kumari, D., Yamajala, K.D.B., Singh, H., Sanghavi, R.R., Asthana, S.N., Raju, K. and Banerjee, S., "Application of Azido Esters as Energetic Plasticizers for LOVA Propellant Formulations," Propellants, Explosives, Pyrotechnics, Vol. 38, No. 6, pp. 805-809, 2013. https://doi.org/10.1002/prep.201300070
  4. Selim, K., Ozkar, S. and Yilmaz, L., "Thermal Characterization of Glycidyl Azide Polymer (GAP) and GAP-based Binders for Composite Propellants," Journal of Applied Polymer Science, Vol. 77, No. 3, pp. 538-546, 2000. https://doi.org/10.1002/(SICI)1097-4628(20000718)77:3<538::AID-APP9>3.0.CO;2-X
  5. Koch, E.C., Metal-Fluorocarbon Based Energetic Materials, Wiley-VCH Verlag & Co. KGaA, Weinheim, Germany, 2012.
  6. Yang, Y., Wang, S., Sun, Z. and Dlott, D.D., "Near-infrared Laser Ablation of Polytetrafluoroethylene (PTFE) Sensitized by Nanoenergetic Materials," Applied Physics Letters, Vol. 85, No. 9, pp. 1493-1495, 2004. https://doi.org/10.1063/1.1785291
  7. Fisher, S. and Grubelich, M., "A Survey of Combustible Metals, Thermites, and Intermetallics for Pyrotechnic Applications," 32nd Joint Propulsion Conference and Exhibit, Lake Buena Vista, F.L., U.S.A., AIAA 1996-3018, Jul. 1996.
  8. Pantoya, M.L. and Dean, S.W., "The Influence of Alumina Passivation on Nano-Al/Teflon Reactions," Thermochimica Acta, Vol. 493, No. 1-2, pp. 109-110, 2009. https://doi.org/10.1016/j.tca.2009.03.018
  9. Huang, C., Jian, G., DeLisio, J.B., Wang, H. and Zachariah, M.R., "Electrospray Deposition of Energetic Polymer Nanocomposites with High Mass Particle Loadings: A Prelude to 3D Printing of Rocket Motors," Advanced Engineering Materials, Vol. 17, No. 1, pp. 95-101, 2015. https://doi.org/10.1002/adem.201400151
  10. Kettwich, S.C., Kappagantula, K., Kusel, B.S., Avjian, E.K., Danielson, S.T., Miller, H.A., Pantoya, M.L. and Lacono, S.T., "Thermal Investigations of Nanoaluminum/ Perfluoropolyether Core-Shell Impregnated Composites for Structural Energetics," Thermochimica Acta, Vol. 591, pp. 45-50, 2014. https://doi.org/10.1016/j.tca.2014.07.016
  11. Ma, M., Shen, Y., Kwon, Y., Chung, C. and Kim, J.S., "Reactive Energetic Plasticizers for Energetic Polyurethane Binders Prepared via Simultaneous Huisgen Azide-Alkyne Cycloaddition and Polyurethane Reaction," Propellants, Explosives, Pyrotechnics, Vol. 41, pp. 746-756, 2016. https://doi.org/10.1002/prep.201500268
  12. Smart, B.E., "Fluorine Substituent Effects (on Bioactivity)," Journal of Fluorine Chemistry, Vol. 109, No. 1, pp. 3-11, 2001. https://doi.org/10.1016/S0022-1139(01)00375-X
  13. Ang, H.G. and Pisharath, S., Energetic Polymers, Wiley-VCH Verlag & Co. KGaA, Weinheim, Germany, 2012.
  14. Miller, H.A., Kusel, B.S., Danielson, S.T., Neat, J.W., Avjian, E.K., Pierson, S.N., Budy, S.M., Ball, D.W., Iacono, S.T. and Kettwich, S.C., "Metastable Nanostructured Metallized Fluoropolymer Composites for Energetics," Journal of Materials Chemistry A, Vol. 1, No. 24, pp. 7050-7058, 2013. https://doi.org/10.1039/c3ta11603d