DOI QR코드

DOI QR Code

파이로테크닉 착화기의 충격파 전달에 의한 폭굉 반응 해석

Hydrodynamic Analysis on Shock-induced Detonation in Pyrotechnic Initiator

  • Kim, Bohoon (Department of Mechanical and Aerospace Engineering, Seoul National University) ;
  • Kang, Wonkyu (Energetic Material & Pyrotechnics Department, Hanwha Corporation R&D Institute) ;
  • Jang, Seung-gyo (Agency for Defense Development) ;
  • Yoh, Jai-ick (Department of Mechanical and Aerospace Engineering, Seoul National University)
  • 투고 : 2016.05.23
  • 심사 : 2016.07.27
  • 발행 : 2016.10.01

초록

파이로테크닉 착화기의 충격파 전달에 의한 폭굉 반응을 해석하기 위하여 고폭약의 폭압 발달 및 비반응 물질의 압력 감쇠 현상을 연동하여 모사할 수 있는 하이드로다이나믹 솔버를 구성하였다. 본 연구에서는 소량의 시약으로 기폭 판단이 가능한 SSGT의 시험 및 전산모사를 수행하여 97.5% RDX로 구성된 수폭약의 충격에 대한 점화 민감도를 정량화하였다. 파이로테크닉 착화기를 형상화 한 여폭약(HNS+HMX) - 격벽(STS) - 수폭약(RDX)으로 구성된 TBI 화약 트레인을 고려하여 충격파 전달을 해석함으로써 반응 및 비반응 물질 간 상호작용에 의한 임계 격벽 두께 및 기폭 압력 간의 관계를 규명하고, 소형 파이로 착화기의 작동특성을 검증하였다.

We presented a hydrodynamic modeling necessary to accurately reproduce shock-induced detonation of pyrotechnic initiator. The methodology for such numerical prediction of shock propagation is quite straight forward if the models are properly implemented and solved in a well-formulated shock physics code. A series of SSGT(Small Scale Gap Test) and detailed hydrodynamic simulation are conducted to quantify the shock sensitivity of an acceptor that contains 97.5% RDX. A TBI(Through Bulkhead Initiator) system, consisting of a train configuration of Donor(HNS+HMX) - Bulkhead(STS) - Acceptor(RDX), were investigated to further validate the interaction between energetic and non-reactive materials for predicting the detonating response for successful operation of such small pyro device.

키워드

참고문헌

  1. Price, D., Clairmont, A.R. and Erkman, J.O., "The NOL Large Scale Gap Test. III. Compilation of Unclassified Data and Supplementary Information for Interpretation of Results," AD-780429, 1974.
  2. Wall, C. and Franson, M., "Validation of a Pressed Pentolite Donor for the Large Scale Gap Test at DSTO," DSTO-TN-1172, AR-015-586, 2013.
  3. Bourne, N.K., Cooper, G.A., Burley, S.J., Fung, V. and Hollands, R., "Re-Calibration of the UK Large Scale Gap Test," Propellants, Explosives, Pyrotechnics, Vol. 30, No. 3, pp. 196-198, 2005. https://doi.org/10.1002/prep.200500005
  4. Kim, B., Park, J. and Yoh, J.J., "Analysis on shock attenuation in gap test configuration for characterizing energetic materials," Journal of Applied Physics, Vol. 119, 145902, 2016. https://doi.org/10.1063/1.4945777
  5. Price, D. and Liddiard, T.P., "The Small Scale Gap Test: Calibration and Comparison with the Large Scale Gap Test," NOLTR 66-87, 1966.
  6. Souers, P.C. and Vitello, P., "Initiation Pressure Thresholds from Three Sources," Propellants, Explosives, Pyrotechnics, Vol. 32, pp. 288-295, 2007. https://doi.org/10.1002/prep.200700030
  7. Kim, B., Park, J., Lee, K. and Yoh, J.J., "A reactive flow model for heavily aluminized cyclotrimethylene-trinitramine," Journal of Applied Physics, Vol. 116, 023512, 2014. https://doi.org/10.1063/1.4887811
  8. Lee, E.L., Hornig, H.C. and Kury, J.W., "Adiabatic Expansion of High Explosive Detonation Products," UCRL-50422, TID-4500, 1968.
  9. Steinberg, D.J., "Equation of State and Strength Properties of Selected Materials," UCRL-MA-106439, 1996.
  10. Marsh, S.P., "LASL Shock Hugoniot Data," University of California, Berkeley, 1980.
  11. Peroni, L., Scapin, M., Fichera, C. and Giglio, M., "Mechanical properties at high strain-rate of lead core and brass jacket of a NATO 7.62 mm ball bullet," 10th International Conference on the Mechanical and Physical Behaviour of Materials under Dynamic Loading, EPJ Web of Conferences, Vol. 26, 04010, 2012.
  12. Kim, B., Kang, W., Jang, S., Park, J. and Yoh, J.J., "A Study on Shock-induced Detonation in Gap Test," Journal of the Korean Society of Propulsion Engineers, Vol. 20, No. 2, pp. 75-85, 2016. https://doi.org/10.6108/KSPE.2016.20.2.075
  13. Fried, L.E., Howard, W.M. and Souers, P.C., "Cheetah 2.0 User's Manual," UCRL-MA-117541 Rev. 5, 1998.