DOI QR코드

DOI QR Code

Numerical Ductile Tearing Simulation of Circumferential Cracked Pipe Tests under Dynamic Loading Conditions

  • Nam, Hyun-Suk (Department of Mechanical Engineering, Korea University) ;
  • Kim, Ji-Soo (Department of Mechanical Engineering, Korea University) ;
  • Ryu, Ho-Wan (Department of Mechanical Engineering, Korea University) ;
  • Kim, Yun-Jae (Department of Mechanical Engineering, Korea University) ;
  • Kim, Jin-Weon (Department of Nuclear Engineering, Chosun University)
  • 투고 : 2016.01.08
  • 심사 : 2016.03.29
  • 발행 : 2016.10.25

초록

This paper presents a numerical method to simulate ductile tearing in cracked components under high strain rates using finite element damage analysis. The strain rate dependence on tensile properties and multiaxial fracture strain is characterized by the model developed by Johnson and Cook. The damage model is then defined based on the ductility exhaustion concept using the strain rate dependent multiaxial fracture strain concept. The proposed model is applied to simulate previously published three cracked pipe bending test results under two different test speed conditions. Simulated results show overall good agreement with experimental results.

키워드

참고문헌

  1. G.R. Johnson, W.H. Cook, Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressure, Eng. Fract. Mech. 21 (1985) 31-48. https://doi.org/10.1016/0013-7944(85)90052-9
  2. U.S. Lindholm, Some experiments with the split Hopkinson pressure bar, J. Mech. Phys. Solids 12 (1964) 317-335. https://doi.org/10.1016/0022-5096(64)90028-6
  3. J.D. Campbell, A.M. Eleiche, M.C. Tsao, Strength of metals and alloys at high strain and strain rates, Fund. Asp. Struct. Alloy Des. 31 (1977) 545-561.
  4. T. Nicholas, Material behavior at high strain rates, Impact Dyn. (1982) 95-153.
  5. B.J. Tuazon, K.O. Bae, S.H. Lee, H.S. Shin, Integration of a new data acquisition/processing scheme in SHPB test and characterization of the dynamic material properties of high-strength steels using the optional form of Johnson-Cook model, J. Mech. Sci. Technol. 28 (2014) 3561-3568. https://doi.org/10.1007/s12206-014-0817-8
  6. M. Anvari, I. Scheider, C. Thaulow, Simulation of dynamic ductile crack growth using strain-rate and triaxiality-dependent cohesive model, Eng. Fract. Mech. 73 (2006) 2210-2228. https://doi.org/10.1016/j.engfracmech.2006.03.016
  7. Z.J. Ren, C.Q. Ru, Numerical investigation of speed dependent dynamic fracture toughness of line pipe steels, Eng. Fract. Mech. 99 (2013) 214-222. https://doi.org/10.1016/j.engfracmech.2012.12.016
  8. P.S. Yu, C.Q. Ru, Strain rate effects on dynamics fracture of pipeline steels: finite element simulation, Int. J. Press. Vessels Piping 126-127 (2015) 1-7. https://doi.org/10.1016/j.ijpvp.2014.12.001
  9. I. Scheider, A. Nonn, A. Volling, A. Mondry, C. Kalwa, A damage mechanics based evaluation of dynamic fracture resistance in gas pipelines, Proc. Mater. Sci. 3 (2014) 1956-1964. https://doi.org/10.1016/j.mspro.2014.06.315
  10. M. Anvari, J. Liu, C. Thaulow, Dynamic ductile fracture in aluminum round bars: experiments and simulations, Int. J. Fract. 143 (2007) 317-332. https://doi.org/10.1007/s10704-007-9062-9
  11. J.H. Kim, N.H. Kim, Y.J. Kim, K. Hasegawa, K. Miyazaki, Ductile fracture simulation of 304 stainless steel pipes with two circumferential surface cracks, Fatigue Fract. Eng. Mater. Struct. 36 (2013) 1067-1080. https://doi.org/10.1111/ffe.12072
  12. H.S. Nam, Y.R. Oh, Y.J. Kim, J.S. Kim, M. Naoki, Application of engineering ductile tearing simulation method to CRIEPI pipe test, Eng. Fract. Mech. 153 (2016) 128-142. https://doi.org/10.1016/j.engfracmech.2015.12.012
  13. H.W. Ryu, K.D. Bae, Y.J. Kim, J.J. Han, J.S. Kim, P. Budden, Ductile tearing simulation of Battelle pipe test using simplified stress-modified fracture strain concept, Fatigue Fract. Eng. Mater. Struct. http://dx.doi.org/10.1111/ffe.12456.
  14. T. Borvik, O.S. Hopperstad, T. Berstad, On the influence of stress triaxiality and strain rate on the behavior of a structural steel. Part II numerical study, Eur. J. Mech. A/Solids 22 (2003) 15-32. https://doi.org/10.1016/S0997-7538(02)00005-0
  15. Battelle, Pipe Fracture Encyclopedia, in: Pipe Fracture Test Data, vol. 3, 1997. Columbus, OH, USA.
  16. J.D. Baird, The effects of strain aging due to interstitial solutes on the mechanical properties of metals, Metallurg Rev. 16 (1971) 1-18.
  17. C.W. Marschall, R. Mohan, P. Krishnaswamy, G. Wilkowski, Effect of Dynamic Strain Aging on the Strength and Toughness of Nuclear Ferritic Piping at LWR Temperature, NUREG/CR-6226, 1994.
  18. ASTM Standards E813-81 Standard test method for J, A Measure of Fracture Toughness, Annual Book of ASTM Standards Part 10, West Conshohocken, PA, USA, 1983.
  19. J.R. Rice, D.M. Tracey, On the ductile enlargement of voids in triaxial stress fields, J. Mech. Phys. Solids 17 (1969) 201-217. https://doi.org/10.1016/0022-5096(69)90033-7
  20. B. Marini, F. Mudry, A. Pineau, Ductile rupture of A508 steel under nonradial loading, Eng. Fract. Mech. 22 (1985) 375-386. https://doi.org/10.1016/0013-7944(85)90139-0
  21. C.K. Oh, Y.J. Kim, J.H. Baek, W.S. Kim, Development of stress-modified fracture strain for ductile failure of API X65 steel, Int. J. Fract. 143 (2007) 119-133. https://doi.org/10.1007/s10704-006-9036-3

피인용 문헌

  1. Energy-based numerical modeling of the strain rate effect on fracture toughness of SA508 Gr. 1a vol.52, pp.3, 2016, https://doi.org/10.1177/0309324717696609
  2. 표준 인장시험과 반복하중 C(T) 시험을 이용한 균열해석에서의 Chaboche 복합경화 모델 결정법 vol.15, pp.2, 2016, https://doi.org/10.20466/kpvp.2019.15.2.031
  3. Application of cohesive zone model to large scale circumferential through-wall and 360° surface cracked pipes under static and dynamic loadings vol.53, pp.3, 2016, https://doi.org/10.1016/j.net.2020.07.041