DOI QR코드

DOI QR Code

A Complete, Reductive Depolymerization of Concentrated Sulfuric Acid Hydrolysis Lignin into a High Calorific Bio-oil using Supercritical Ethanol

  • Riaz, Asim (School of Mechanical Eng., Sungkyunkwan Univ.) ;
  • Kim, Jaehoon (School of Mechanical Eng., Sungkyunkwan Univ.)
  • 투고 : 2016.06.07
  • 심사 : 2016.08.19
  • 발행 : 2016.09.30

초록

It is imperative to develop an effective pathway to depolymerize lignin into liquid fuel that can be used as a bioheavy oil. Lignin can be converted into liquid products either by a solvent-free thermal cracking in the absence air, or thermo-chemical degradation in the presence of suitable solvents and chemicals. Here we show that the solvent-assisted liquefaction has produced promising results in the presence of metal-based catalysts. The supercritical ethanol is an efficient liquefaction solvent, which not only provides better solubility to lignin, but also scavenges the intermediate species. The concentrated sulfuric acid hydrolysis lignin (CSAHL) was completely liquefied in the presence of solid catalysts (Ni, Pd and Ru) with no char formation. The effective deoxy-liquefaction nature associated with scEtOH with aid hydrodeoxygenation catalysts, resulted in significant reduction in oxygen-to-carbon (O/C) molar ratio up to 61%. The decrease in oxygen content and increase in carbon and hydrogen contents increased the calorific value bio-oil, with higher heating value (HHV) of $34.6MJ{\cdot}Kg^{-1}$. The overall process is energetically efficient with 129.8% energy recovery (ER) and 70.8% energy efficiency (EE). The GC-TOF/MS analysis of bio-oil shows that the bio-oil mainly consists of monomeric species such as phenols, esters, furans, alcohols, and traces of aliphatic hydrocarbons. The bio-oil produced has better flow properties, low molecular weight, and high aromaticity.

키워드

참고문헌

  1. Ragauskas AJ, Beckham GT, Biddy MJ, Chandra R, Chen F, Davis MF, Davison BH, Dixon RA, Gilna P, Keller M, Langan P, Naskar AK, Saddler JN, Tschaplinski TJ, Tuskan GA, Wyman CE, Lignin valorization: improving lignin processing in the biorefinery. Science 2014;344:1246843. https://doi.org/10.1126/science.1246843
  2. Zakzeski J, Bruijnincx PC, Jongerius AL, Weckhuysen BM, The catalytic valorization of lignin for the production of renewable chemicals. Chem Rev 2010;110:3552-3599. https://doi.org/10.1021/cr900354u
  3. Kang SM, Li XL, Fan J, Chang J, Hydrothermal conversion of lignin: A review. Renew Sust Energy Rev 2013;27:546-558. https://doi.org/10.1016/j.rser.2013.07.013
  4. Laurichesse S, Averous L, Chemical modification of lignins: Towards biobased polymers. Prog Polym Sci 2014;39:1266-1290. https://doi.org/10.1016/j.progpolymsci.2013.11.004
  5. Pandey MP, Kim CS, Lignin Depolymerization and Conversion: A Review of Thermochemical Methods. Chem Eng Technol 2011;34:29-41. https://doi.org/10.1002/ceat.201000270
  6. Vishtal A, Kraslawski A, Challenges in industrial application of technical lignin. BioResources 2011;6:3547-3568.
  7. Dorrestijin E, Laarhoven LJJ, Arends IWCE, Mulder P, The occurrence and reactivity of phenoxyl linkages in lignin and low rank coal. J Anal Appl Pyrolysis 2000;54:153-192. https://doi.org/10.1016/S0165-2370(99)00082-0
  8. Nowakowski DJ, Bridgwater AV, Elliott DC, Meier D, de Wild P, Lignin fast pyrolysis: Results from an international collaboration. J Anal Appl Pyrolysis 2010;88:53-72. https://doi.org/10.1016/j.jaap.2010.02.009
  9. Shen DK, Gu S, Luo KH, Wang SR, Fang MX, The pyrolytic degradation of wood-derived lignin from pulping process. Bioresour Technol 2010;101:6136-6146. https://doi.org/10.1016/j.biortech.2010.02.078
  10. Choi HS, Meier D, Fast pyrolysis of Kraft lignin-Vapor cracking over various fixed-bed catalysts. J Anal Appl Pyrolysis 2013;100:207-212. https://doi.org/10.1016/j.jaap.2012.12.025
  11. Mukkamala S, Wheeler MC, van Heiningen ARP, DeSisto WJ, Formate-Assisted Fast Pyrolysis of Lignin. Energy Fuels 2012;26:1380-1384. https://doi.org/10.1021/ef201756a
  12. Zhang M, Resende FLP, Moutsoglou A, Catalytic fast pyrolysis of aspen lignin via Py-GC/MS. Fuel 2014;116:358-369. https://doi.org/10.1016/j.fuel.2013.07.128
  13. Nguyen TDH, Maschietti M, Belkheiri T, Amand LE, Theliander H, Vamling L, Olausson L, Andersson SI, Catalytic depolymerisation and conversion of Kraft lignin into liquid products using near-critical water. J Supercrit Fluids 2014;86:67- 75. https://doi.org/10.1016/j.supflu.2013.11.022
  14. Beauchet R, Monteil-Rivera F, Lavoie JM, Conversion of lignin to aromatic-based chemicals (L-chems) and biofuels (L-fuels). Bioresour Technol 2012;121:328-334. https://doi.org/10.1016/j.biortech.2012.06.061
  15. Erdocia X, Prado R, Corcuera MA, Labidi J, Base catalyzed depolymerization of lignin: Influence of organosolv lignin nature. Biomass & Bioenergy 2014;66:379-386. https://doi.org/10.1016/j.biombioe.2014.03.021
  16. Roberts VM, Stein V, Reiner T, Lemonidou A, Li X, Lercher JA, Towards quantitative catalytic lignin depolymerization. Chemistry 2011;17:5939-5948. https://doi.org/10.1002/chem.201002438
  17. Long JX, Xu Y, Wang TJ, Yuan ZQ, Shu RY, Zhang Q, Ma L, Efficient base-catalyzed decomposition and in situ hydrogenolysis process for lignin depolymerization and char elimination. Applied Energy 2015;141:70-79. https://doi.org/10.1016/j.apenergy.2014.12.025
  18. W. W. Zmierczak JDM, US007964761B2. 2011.
  19. Jongerius AL, Bruijnincx PCA, Weckhuysen BM, Liquid-phase reforming and hydrodeoxygenation as a two-step route to aromatics from lignin. Green Chem 2013;15:3049-3056. https://doi.org/10.1039/c3gc41150h
  20. Patil PT, Armbruster U, Richter M, Martin A, Heterogeneously Catalyzed Hydroprocessing of Organosolv Lignin in Sub-and Supercritical Solvents. Energy Fuels 2011;25:4713-4722. https://doi.org/10.1021/ef2009875
  21. Xu W, Miller SJ, Agrawal PK, Jones CW, Depolymerization and hydrodeoxygenation of switchgrass lignin with formic acid. ChemSusChem 2012;5:667-675. https://doi.org/10.1002/cssc.201100695
  22. Huang X, Koranyi TI, Boot MD, Hensen EJ, Catalytic depolymerization of lignin in supercritical ethanol. ChemSusChem 2014;7:2276-2288. https://doi.org/10.1002/cssc.201402094
  23. Ma R, Hao W, Ma X, Tian Y, Li Y, Catalytic ethanolysis of Kraft lignin into high-value small-molecular chemicals over a nanostructured alpha-molybdenum carbide catalyst. Angew Chem Int Ed Engl 2014;53:7310-7315. https://doi.org/10.1002/anie.201402752
  24. Tang Z, Zhang Y, Guo QX, Catalytic Hydrocracking of Pyrolytic Lignin to Liquid Fuel in Supercritical Ethanol. Ind Eng Chem Res 2010;49:2040-2046. https://doi.org/10.1021/ie9015842
  25. Barta K, Matson TD, Fettig ML, Scott SL, Iretskii AV, Ford PC, Catalytic disassembly of an organosolv lignin via hydrogen transfer from supercritical methanol. Green Chem 2010;12:1640-1647. https://doi.org/10.1039/c0gc00181c
  26. Huang S, Mahmood N, Tymchyshyn M, Yuan Z, Xu CC, Reductive de-polymerization of kraft lignin for chemicals and fuels using formic acid as an in-situ hydrogen source. Bioresour Technol 2014;171:95-102. https://doi.org/10.1016/j.biortech.2014.08.045
  27. Kleinert M, Barth T, Towards a lignincellulosic biorefinery: Direct one-step conversion of lignin to hydrogen-enriched biofuel. Energy Fuels 2008;22:1371-1379. https://doi.org/10.1021/ef700631w
  28. Yong TLK, Matsumura Y, Reaction Kinetics of the Lignin Conversion in Supercritical Water. Ind Eng Chem Res 2012;51:11975-11988. https://doi.org/10.1021/ie300921d
  29. Ye YY, Zhang Y, Fan J, Chang J, Novel Method for Production of Phenolics by Combining Lignin Extraction with Lignin Depolymerization in Aqueous Ethanol. Ind Eng Chem Res 2012;51:103-110. https://doi.org/10.1021/ie202118d
  30. Gosselink RJ, Teunissen W, van Dam JE, de Jong E, Gellerstedt G, Scott EL, Sanders JP, Lignin depolymerisation in supercritical carbon dioxide/acetone/water fluid for the production of aromatic chemicals. Bioresour Technol 2012;106:173-177. https://doi.org/10.1016/j.biortech.2011.11.121
  31. Kim JY, Oh S, Hwang H, Cho TS, Choi IG, Choi JW, Effects of various reaction parameters on solvolytical depolymerization of lignin in sub- and supercritical ethanol. Chemosphere 2013;93:1755-1764. https://doi.org/10.1016/j.chemosphere.2013.06.003
  32. Cheng S, Wilks C, Yuan Z, Leitch M, Xu C, Hydrothermal degradation of alkali lignin to bio-phenolic compounds in sub/supercritical ethanol and water-ethanol co-solvent. Polym Degrad Stab 2012;97:839-848. https://doi.org/10.1016/j.polymdegradstab.2012.03.044
  33. Ehara K, Saka S, Kawamoto H, Characterization of the ligninderived products from wood as treated in supercritical water. J Wood Sci 2002;48:320-325. https://doi.org/10.1007/BF00831354
  34. Yuan Z, Cheng S, Leitch M, Xu CC, Hydrolytic degradation of alkaline lignin in hot-compressed water and ethanol. Bioresour Technol 2010;101:9308-9313. https://doi.org/10.1016/j.biortech.2010.06.140
  35. Rahimi A, Azarpira A, Kim H, Ralph J, Stahl SS, Chemoselective metal-free aerobic alcohol oxidation in lignin. J Am Chem Soc 2013;135:6415-6418. https://doi.org/10.1021/ja401793n
  36. Ma R, Xu Y, Zhang X, Catalytic oxidation of biorefinery lignin to value-added chemicals to support sustainable biofuel production. ChemSusChem 2015;8:24-51. https://doi.org/10.1002/cssc.201402503
  37. Kleinert M, Gasson JR, Barth T, Optimizing solvolysis conditions for integrated depolymerisation and hydrodeoxygenation of lignin to produce liquid biofuel. J Anal Appl Pyrolysis 2009;85:108-117. https://doi.org/10.1016/j.jaap.2008.09.019
  38. Yokoyama S-y, Suzuki A, Murakami M, Ogi T, Koguchi K, Nakamura E, Liquid fuel production from sewage sludge by catalytic conversion using sodium carbonate. Fuel 1987;66:1150-1155. https://doi.org/10.1016/0016-2361(87)90315-2
  39. Goran G, Per T, Peter A, Birgit B, Lignin recovery and lignin-based products. in: Christopher LP. Integrated forest biorefineries challenges and opportunities. Thomas Graham House, United Kingdom: The Royal Society Of Chemistry; 2013, pp. 180-210.
  40. Matsushita Y, Yasuda S, Preparation and evaluation of lignosulfonates as a dispersant for gypsum paste from acid hydrolysis lignin. Bioresour Technol 2005;96:465-470. https://doi.org/10.1016/j.biortech.2004.05.023
  41. Hasegawa I, Fujji Y, Yammada K, Kariya C, Takayama T, Ligninsilica hybrids as precursors for silicon carbide. J Appl Polym Sci 1999;73:1321-1328. https://doi.org/10.1002/(SICI)1097-4628(19990815)73:7<1321::AID-APP25>3.0.CO;2-0