References
-
A. Goyal, S. Bansal, and S. Singhal, "Facile Reduction of Nitrophenols: Comparative Catalytic Efficiency of
$MFe_2O_4$ (M = Ni, Cu, Zn) Nano Ferrites", Int. J. Hydrogen Energ., 39, 4895 (2014). https://doi.org/10.1016/j.ijhydene.2014.01.050 - H. Liu, T. Lv, X. H. Wu, C. K. Zhu, and Z. F. Zhu, "Preparation and Enhanced Photocatalytic Activity of CdS@RGO Core-Shell Structural Microspheres", Appl. Sulf. Sci., 305, 242 (2014). https://doi.org/10.1016/j.apsusc.2014.03.045
- S. Ameen, M. S. Akhtar, M. Nazim, and H. S. Shin, "Rapid Photocatalytic Degradation of Crystal Violet Dye over ZnO Flower Nanomaterials", Mater. Lett., 96, 228 (2013). https://doi.org/10.1016/j.matlet.2013.01.034
- A. Niaz, J. Fischer, J. Barek, B. Yosypchuk, Sirajuddin, and M.I. Bhanger, "Voltammetric Determination of 4-Nitrophenol Using a Novel Type of Silver Amalgam Paste Electrode", Electroanal., 21, 1786 (2009). https://doi.org/10.1002/elan.200904622
- S. Saha, A. Pal, S. Kundu, S. Basu, and T. Pal, "Photochemical Green Synthesis of Calcium-Alginate-Stabilized Ag and Au Nanoparticles and Their Catalytic Application to 4-Nitrophenol Reduction", Langmuir 26, 2885 (2010). https://doi.org/10.1021/la902950x
- C. V. Rode, M. J. Vaidya, and R. V. Chaudhari, "Synthesis of p-Aminophenol by Catalytic Hydrogenation of Nitrobenzene", Org. Process Res. Dev., 3, 465 (1999). https://doi.org/10.1021/op990040r
- V. K. Gupta, M. L. Yola, T. Eren, F. Kartal, M. O. Caglayan, and N. Atar, "Catalytic Activity of Fe@Ag Nanoparticle Involved Calcium Alginate Beads for the Reduction of Nitrophenols", J. Mol. Liq., 190, 133 (2014). https://doi.org/10.1016/j.molliq.2013.10.022
- K. S. Shin, Y. K. Cho, J. Y. Choi, and K. Kim, "Facile Synthesis of Silver-deposited Silanized Magnetite Nanoparticles and Their Application for Catalytic Reduction of Nitrophenols", Appl. Catal. A: Gen., 413, 170 (2012).
- M. Haruta and M. Date, "Advances in the Catalysis of Au Nanoparticles", Appl. Catal. A: Gen., 222, 427 (2001). https://doi.org/10.1016/S0926-860X(01)00847-X
-
X. M. Gao, F. Fu, and W. H. Li, "Photocatalytic Degradation of Phenol over Cu Loading
$BiVO_4$ Metal Composite Oxides under Visible Light Irradiation", Phys. B., 412, 26 (2013). https://doi.org/10.1016/j.physb.2012.12.023 - S. K. Ghosh, M. Mandal, S. Kundu, S. Nath, and T. Pal, "Bimetallic Pt-Ni Nanoparticles Can Catalyze Reduction of Aromatic Nitro Compounds by Sodium Borohydride in Aqueous Solution", Appl. Catal. A: Gen., 268, 61 (2004). https://doi.org/10.1016/j.apcata.2004.03.017
-
W. R. Zhao, Y. Wang, Y. Yang, J. Tang, and Y. N. Yang, "Carbon Spheres Supported Visible-Light-Driven CuO-
$BiVO_4$ Heterojunction: Preparation, Characterization, and Photocatalytic Propertie", Appl. Catal. B: Environ., 115, 90 (2012). -
W. Zhang, X. Xiao, L. Zheng, and C. Wan, "Fabrication of
$TiO_{2}/MoS_{2}@zeolite$ Photocatalyst and its Photocatalytic Activity for Degradation of Methyl Orange under Visible Light", Appl. Surf. Sci., 358, 468 (2015). https://doi.org/10.1016/j.apsusc.2015.08.054 -
L. Zhang, M. S. Tse, and O. K. Tan, "Controlled Deposition and Enhanced Visible Light Photocatalytic Performance of Pt-Modified
$TiO_2$ Nanotube Arrays", J. Environ. Chem. Eng., 2, 1214 (2014). https://doi.org/10.1016/j.jece.2014.05.006 -
G. Xiao, X. Zhang, W. Y. Zhang, S. Zhang, H. J. Su, and T. W. Tan, "Visible-Light-Mediated Synergistic Photocatalytic Antimicrobial Effects and Mechanism of Ag-Nanoparticles@chitosan-
$TiO_2$ Organic-Inorganic Composites for Water Disinfection", Appl. Catal. B: Environ., 170, 255 (2015). -
T. Arai, M. Yanagida, Y. Konishi, A. Ikura, Y. Iwasaki, H. Sugihara, and K. Sayama, "The Enhancement of
$WO_3$ -Catalyzed Photodegradation of Organic Substances Utilizing the Redox Cycle of Copper Ions", Appl. Catal. B, 84, 42 (2008). https://doi.org/10.1016/j.apcatb.2008.03.002 -
A. Duret and M. Gratzel, "Visible Light-Induced Water Oxidation on Mesoscopic
${\alpha}-Fe_2O_3$ Films Made by Ultrasonic Spray Pyrolysis", J. Phys. Chem. B, 109, 17184 (2005). https://doi.org/10.1021/jp044127c -
T. Saison, N. Chemin, C. Chaneac, O. Durupthy, V. Ruaux, L. Mariey, F. Mauge, P. Beaunier, and J. P. Jolive, "
$Bi_2O_3,\;BiVO_4,\;and\;Bi_2WO_6$ : Impact of Surface Properties on Photocatalytic Activity under Visible Light", J. Phys. Chem. C, 115, 5657 (2011). https://doi.org/10.1021/jp109134z -
Q. Yu, Z. R. Tang, and Y. J. Xu., "Synthesis of
$BiVO_4$ NanoSheets-Graphene Composites Toward Improved Visible Light Photoactivity", J. Energy Chem., 23, 564 (2014). https://doi.org/10.1016/S2095-4956(14)60186-8 -
J. Xu, W. Wang, J. Wang, and Y. Liang, "Controlled Fabrication and Enhanced Photocatalystic Performance of
$BiVO_4@CeO_2$ Hollow Microspheres for the Visible-Light-Driven Degradation of Rhodamine B", Appl. Surf. Sci., 349, 529 (2015). https://doi.org/10.1016/j.apsusc.2015.04.195 -
M. Niu, R. Zhu, F. Tian, K. Song, G. Cao, and F. Ouyang, "The Effects of Precursors and Loading of Carbon on the Photocatalytic Activity of C-
$BiVO_4$ for the Degradation of High Concentrations of Phenol under Visible Light Irradiation", Catal. Tod., 258, 585 (2015). https://doi.org/10.1016/j.cattod.2015.04.005 -
H. M. Fan, T. F. Jiang, H. Y. Li, D. J. Wang, L. L. Wang, J. L. Zhai, D. Q. He, P. Wang, and T. F. Xie, "Effect of
$BiVO_4$ Crystalline Phases on the Photoinduced Carriers Behavior and Photocatalytic Activity", J. Phys. Chem. C, 116, 2425 (2012). https://doi.org/10.1021/jp206798d -
S. Kohtani, M. Tomohiro, K. Tokumura, and R. Nakagaki, "Photooxidation Reactions of Polycyclic Aromatic Hydrocarbons over Pure and Ag-Loaded
$BiVO_4$ Photocatalysts", Appl. Catal. B: Environ., 58, 265 (2005). https://doi.org/10.1016/j.apcatb.2004.12.007 -
M. Wang, C. Niu, J. Liu, Q. Wang, C. Yang, and H. Zheng, "Characterization and Photocatalytic Properties of N-Doped
$BiVO_4$ Synthesized via a Sol-Gel Method", J. Alloys Comp., 548, 70 (2013). https://doi.org/10.1016/j.jallcom.2012.08.140 -
S. W. Cao, Z. Yin, J. Barber, F. Y. C. Boey, S. C. J. Loo, and C. Xue, "Preparation of Au-
$BiVO_4$ Heterogeneous Nanostructures as Highly Efficient Visible-Light Photocatalysts", ACS Appl. Mater. Interfaces, 4, 418 (2012). https://doi.org/10.1021/am201481b -
N. Wetchakum, S. Chaiwichain, B. Inceesungvorn, K. Pingmuang, S. Phanichphant, A. I. Minett, and J. Chen, "
$BiVO_4/CeO_2$ Nanocomposites with High Visible-Light-Induced Photocatalytic Activity", ACS Appl. Mater. Interfaces, 4, 3718 (2012). https://doi.org/10.1021/am300812n -
M. C. Long, W. M. Cai, J. Cai, B. X. Zhou, X. Y. Chai, and Y. H. Wu, "Efficient Photocatalytic Degradation of Phenol over
$Co_3O_4/BiVO_4$ Composite under Visible Light Irradiation", J. Phys. Chem. B, 110, 20211 (2006). https://doi.org/10.1021/jp063441z -
L. Z. Li and B. Yan, "
$BiVO_4/Bi_2O_3$ Submicrometer Sphere Composite: Microstructure and Photocatalytic Activity under Visible-Light Irradiation", J. Alloys Compd., 476, 624 (2009). https://doi.org/10.1016/j.jallcom.2008.09.083 -
D. K. Lee, I. S. Cho, S. Lee, S. T. Bae, J. H. Noh, D. W. Kim, and K. S. Hong, "Effects of Carbon Content on the Photocatalytic Activity of C/
$BiVO_4$ Composites under Visible Light Irradiation", Mater. Chem. Phys., 119, 106 (2010). https://doi.org/10.1016/j.matchemphys.2009.08.028 - X. Men, H. Chen, K. Chang, X. Fang, C. Wu, W. Qin, and S. Yin, "Three-Dimensional Free-Standing ZnO/Graphene Composite Foam for Photocurrent Generation and Photocatalytic Activity", Appl. Catal. B: Environ., 187, 367 (2016). https://doi.org/10.1016/j.apcatb.2016.01.052
-
N. Zhang, Y. Zhang, X. Pan, M. Q. Yang, and Y. J. Xu, "Constructing Ternary CdS-Graphene-
$TiO_2$ Hybrids on the Flatland of Graphene Oxide with Enhanced Visible-Light Photoactivity for Selective Transformation", J. Phys. Chem. C, 116, 180233 (2012). - S. Pan and X. Liu, "ZnS-Graphene Nanocomposite: Synthesis, Characterization and Optical Properties", J. Sol. Sta. Chem., 191, 51 (2012). https://doi.org/10.1016/j.jssc.2012.02.048
-
Y. L. Min, K. Zhang, Y. C. Chen, and Y. G. Zhang, "Enhanced Photocatalytic Performance of
$Bi_2WO_6$ by Graphene Supporter as Charge Transfer Channel", Separ. Purif. Technol., 86, 98 (2012). https://doi.org/10.1016/j.seppur.2011.10.025 - T. Xu, L. Zhang, H. Cheng, and Y. Zhu, "Significantly Enhanced Photocatalytic Performance of ZnO via Graphene Hybridization and the Mechanism Study", Appl. Catal. B: Environ., 101, 382 (2011). https://doi.org/10.1016/j.apcatb.2010.10.007
- S. Y. Yin, X. J. Men, H. Sun, P. She, W. Zhang, C. F. Wu, W. P. Qin, and X. D. Chen, "Enhanced Photocurrent Generation of Bio-Inspired Graphene/ZnO Composite Films", J. Mater. Chem. A, 3, 12016 (2015). https://doi.org/10.1039/C5TA02297E
-
M. Sangareswari and M. M. Sundaram, "A Comparative Study on Photocatalytic Efficiency of
$TiO_2$ and$BiVO_4$ Nanomaterial for Degradation of Methylene Blue Dye under Sunlight Irradiation", J. Avd. Chem. Sci., 1, 75 (2015). -
S. Sarkar and K. K. Chattopadhyay, "Visible Light Photocatalysis and Electron Emission from Porous Hollow Spherical
$BiVO_4$ Nanostructures Synthesized by a Novel Route", Physica. E, 58, 52 (2014). https://doi.org/10.1016/j.physe.2013.11.014 - S. Wunder, F. Polzer, Y. Lu, Y. Mei, and M. Ballauff, "Kinetic Analysis of Catalytic Reduction of 4-Nitrophenol by Metallic Nanoparticles Immobilized in Spherical Polyelectrolyte Brushes", J. Phys. Chem. C, 114, 8814 (2010). https://doi.org/10.1021/jp101125j
-
J. Feng, L. Su, Y. Ma, C. Ren, Q. Guo, and X. Chen, "
$CuFe_2O_4$ Magnetic Nanoparticles: A Simple and Efficient Catalyst for the Reduction of Nitrophenol", Chem. Eng. J., 221, 16 (2013). https://doi.org/10.1016/j.cej.2013.02.009 -
H. Liu, T. Lv, C. Zhu, X. Su, and Z. Zhu, "Efficient Synthesis of
$MoS_2$ Nanoparticles Modified$TiO_2$ Nanobelts with Enhanced Visible-Light-Driven Photocatalytic Activity", J. Mol. Catal. A: Chem., 396, 136 (2015). https://doi.org/10.1016/j.molcata.2014.10.002 -
Y. Geng, P. Zhang, N. Li, and Z. Sun, "Synthesis of Co Doped
$BiVO_4$ with Enhanced Visible-Light Photocatalytic Activities", J. Alloys Compd., 651, 744 (2015). https://doi.org/10.1016/j.jallcom.2015.08.123 - K. Dai, G. Dawson, S. Yang, Z. Chen, and L. Lu, "Large Scale Preparing Carbon Nanotube/Zinc Oxide Hybrid and its Application for Highly Reusable Photocatalyst", Chem. Eng. J., 191, 571 (2012). https://doi.org/10.1016/j.cej.2012.03.008