DOI QR코드

DOI QR Code

Application of Potassium Feldspar pIR-IRSL Method to Dating Quaternary Marine and Fluvial Terrace Sediments in Korea: A Case Study on a Fluvial Terrace and Gusan Fault in Uljin, Korea

한반도 해안-하안단구 퇴적층에 대한 K 장석 pIR-IRSL연대측정법 적용가능성 고찰: 울진 하안단구와 구산단층 연대측정

  • Hong, Seongchan (Department of Geography Education, Korea University) ;
  • Choi, Jeong-Heon (Department of Earth and Environmental Sciences, Korea Basic Science Institute)
  • 홍성찬 (고려대학교 지리교육과) ;
  • 최정헌 (한국기초과학지원연구원 지구환경연구부)
  • Received : 2016.08.08
  • Accepted : 2016.08.19
  • Published : 2016.09.30

Abstract

In this paper, in order to test the possibility of applying K feldspar $pIR-IRSL_{290}$ signal(read out at $290^{\circ}C$) to date old terrace sediments(up to ~ 200 ka, MIS 7) in Korea, we investigated luminescence properties of $pIR-IRSL_{290}$ signals in K feldspar extracts from 27 marine and fluvial terrace sediment samples, and these were compared with those of quartz OSL and conventional K feldspar $IRSL_{50}$ (readout at $50^{\circ}C$) signals. The averaged $2D_0$ value of K feldspar $pIR-IRSL_{290}$ growth curves was ~ 700 Gy, which is consistent with that of $IRSL_{50}$ signal, and this is 3 times higher than that for quartz OSL (~ 250 Gy) on average. Where possible, K feldspar $pIR-IRSL_{290}$ ages were compared with quartz OSL and conventional $IRSL_{50}$ ages. Our preliminary K feldspar $pIR-IRSL_{290}$ ages were older than quartz OSL ages by about 200%, while fading rate-corrected conventional $IRSL_{50}$ ages are in good agreement with those based on quartz OSL. This seems to indicate the possibility of K-feldspar $pIR-IRSL_{290}$ age overestimation due to the presence of unbleachable $pIR-IRSL_{290}$ signals, even with a prolonged exposure to sunlight. Both quartz OSL and K-feldspar $pIR-IRSL_{290}$ signals for the samples from Noeum fluvial terrace and Gusan fault site were all in dose saturation level, thus unable to estimate the formation ages of the sediments. However, $2D_0$ values derived from the dose response growth curves strongly indicate that the Noeum fluvial terrace sediments have formed before 109-140 ka, while the fluvial sediments from Gusan fault were desposited before 100-105 ka. Further, this seems to suggest that the previous quartz OSL ages of ~40-50 ka for Gusan fault sediments should be the underestimated ones due to dose saturation problem.

이 논문에서는 K-장석 $pIR-IRSL_{290}$ 연대측정법의 한반도 해안-하안단구 퇴적층의 연대측정 적용가능성을 알아보기 위하여, 다양한 환경(해성, 하성, 풍성)에서 형성된 한반도 해안-하안단구 시료들의 K-장석 $pIR-IRSL_{290}$, $IRSL_{50}$, 석영 OSL 신호특성을 살펴보고, 경북 울진군 노음리 하안단구 퇴적층과 구산단층 퇴적물에 대한 연대측정을 실시하였다. 연구에 사용된 27개의 시료들에 대한 K-장석 $pIR-IRSL_{290}$ 신호의 $2D_0$ 값은 평균적으로 약 700 Gy로, $IRSL_{50}$ 신호의 $2D_0$ 값과 유사하였으며, 석영 OSL 신호의 $2D_0$ 값(약 250 Gy) 보다는 3배 정도 높았다. 일부 시료에 대한 K-장석 $pIR-IRSL_{290}$, $IRSL_{50}$, 석영 OSL 연대측정 결과, K-장석 $pIR-IRSL_{290}$ 연대는, $IRSL_{50}$ 및 석영 OSL 연대보다 상당히 높았다. 이는 퇴적과정동안 장시간 햇빛에 노출되어도 제거되지 않는(unbleachable) $pIR-IRSL_{290}$ 신호에서 기인했을 가능성이 있다. 경북 울진군 노음리의 하안단구 퇴적층과 구산단층 퇴적층에서 분리한 K-장석 $pIR-IRSL_{290}$ 신호와 석영 OSL 신호도 모두 방사선포화상태에 있어, 정확한 퇴적연대를 측정하는데 한계가 있었다. 하지만, 각 신호의 성장곡선으로부터 얻은 $2D_0$ 값은 노음리 하안단구 퇴적층은 109-140 ka 이전, 구산단층에 의해 절단된 퇴적층은 적어도 100-105 ka 이전에 형성되었을 가능성을 강력히 시사한다. 이 결과는, 기존 ~40-50 ka의 석영 OSL 신호를 기반으로 한 구산단층 퇴적층의 연대가 방사선포화현상에 의해 과소평가된 연대임을 의미한다.

Keywords

References

  1. Ankjaergaard, C., Guralnik, B., Buylaert, J.-P., Reimann, T., Yi, S.W. and Wallinga, J., 2016, Violet stimulate luminescence dating of quartz from Luochan (Chinese loess plateau): Agreement with independent chronology up to - 600 ka. Quaternary Geochronology, 34, 33-46. https://doi.org/10.1016/j.quageo.2016.03.001
  2. Auclair, M., Lamothe, M. and Huot, S., 2003, Measurements of anomalous fading for feldspar IRSL using SAR. Radiation Measurements, 37, 487-492. https://doi.org/10.1016/S1350-4487(03)00018-0
  3. Baram, L., Phillips, W.M., Maher, B.A., Karloukovski, V., Duller, G.A.T., Jain, M., Wintle, A.G., 2011, The dating and interpretation of a Mode 1 site in the Luangwa Valley, Zambia. Journal of Human Evolution, 60, 549-570. https://doi.org/10.1016/j.jhevol.2010.12.003
  4. Buylaert, J.P., Jain, M., Murray, A.S., Thomsen, K.J., Thiel, C. and Sohbati, R., 2012, A robust feldspar luminescence dating method for Middle and Late Pleistocene sediments. Boreas, 41, 435-451. https://doi.org/10.1111/j.1502-3885.2012.00248.x
  5. Cheong, C.-S., 2002, Dating marine terraces. Journal of the Geological Society of Korea, 38, 279-291.
  6. Choi, J.H., Cheong, C.-S. and Chang, H.W., 2004, Principles of quartz OSL (Optically Stimulated Luminescence) dating and its geological applications. Journal of the Geological Society of Korea, 40, 567-583.
  7. Choi, J.H., Murray, A.S., Jain, M., Cheong, C.-S. and Chang, H.W., 2003a, Luminescence dating of well-sorted marine terrace sediments on the southeastern coast of Korea. Quaternary Science Reviews, 22, 407-421. https://doi.org/10.1016/S0277-3791(02)00136-1
  8. Choi, J.H., Murray, A.S., Cheong, C.-S., Hong, D.G. and Chang, H.W., 2003b, The resolution of stratigraphic inconsistency in the luminescence ages of marine terrace sediments from Korea. Quaternary Science Reviews, 22, 1201-1206. https://doi.org/10.1016/S0277-3791(03)00022-2
  9. Choi, J.H., Kim, J.W., Murray, A.S., Hong, D.G., Chang, H.W. and Cheong, C.S., 2009, OSL dating of marine terrace sediments on the southeastern coast of Korea with implications for Quaternary tectonics. Quaternary International, 199, 3-14. https://doi.org/10.1016/j.quaint.2008.07.009
  10. DTU Nutech, 2014, Riso TL/OSL reader. Product Specification, p18.
  11. Guralnik, B., Jain, M., Herman, F., Ankærgaard, C., Murray, A.S., Valla, P.G., Preusser, F., King, G.E., Chen, R., Lowick, S.E., Kook, M. and Rhodes, E.J., 2015, OSLthermochronometry of feldspar from the KTB borehole, Germany. Earth and Planetary Science Letters, 423, 232-243. https://doi.org/10.1016/j.epsl.2015.04.032
  12. Hansen, V., Murray, A., Buylaert, J.-P., Yeo, E.Y., and Thomsen, K., 2015, A new irradiated quartz for beta source calibration. Radiation Measurements, 81, 123-127. https://doi.org/10.1016/j.radmeas.2015.02.017
  13. Hernandez, M., Mercier, N., Rigaud, J.-P., Texier, J.-P. and Delpech, F., 2014, A revised chronology for the Grotte Vaufrey (Dordogne, France) based on TT-OSL dating of sedimentary quartz. Journal of Human Evolution, 75, 53-63. https://doi.org/10.1016/j.jhevol.2014.05.010
  14. Hong, S.C., Choi, J.H., Yeo, E.Y. and Kim, J.W., 2013, Principles of K-feldspar IRSL (InfraRed Stimulated Luminescence) dating and its applications. Journal of the Geological Society of Korea, 49, 305-324.
  15. Huntley, D.J. and Lamothe, M., 2001, Ubiquity of anomalous fading in K-feldspar and the measurement and correction for it in optical dating. Canadian Journal of Earth Sciences, 38, 1093-1106. https://doi.org/10.1139/e01-013
  16. Jin, K., Kim, Y.S., Kang, H.C. and Shin, H.C., 2013, Study on developing characteristics of the Quaternary Gusan Fault in Uljin, Gyeongbuk, Korea. Journal of the Geological Society of Korea, 49, 197-207.
  17. KOPEC, 2008, The preliminary site assessment report (PSAR) for the new Uljin reactors 1 and 2, Unpublished report, KOPEC.
  18. Lee, S.Y., Seong, Y.B., Shin, Y.K., Choi, K.H., Kang, H.C. and Choi, J.H., 2011, Cosmogenic $^{10}Be$ and OSL dating of fluvial strath terraces along the Osip-Cheon River, Korea: tectonic implications. Geosciences Journal, 15, 349-444. https://doi.org/10.1007/s12303-011-0037-5
  19. Mejdahl, V., 1987, Internal radioactivity in quartz and feldspar grains. Ancient TL, 5, 10-17.
  20. Mejdahl, V., 1979, Thermoluminescence dating: Beta-dose attenuation in quartz grains. Archaeometry, 21, 61-72. https://doi.org/10.1111/j.1475-4754.1979.tb00241.x
  21. Murray, A.S. and Wintle, A.G., 2000, Luminescence dating of quartz using an improved single-aliquot regenerativedose protocol. Radiation Measurements, 32, 57-73. https://doi.org/10.1016/S1350-4487(99)00253-X
  22. Murray, A.S. and Wintle, A.G., 2003, The single aliquot regenerative dose protocol: potential for improvements in reliability. Radiation Measurements, 37, 377-381. https://doi.org/10.1016/S1350-4487(03)00053-2
  23. Olley, J.M., Murray, A.S. and Roberts, R.G., 1996, The effects of disequilibria in the uranium and thorium decay chains on burial dose rates in fluvial sediments. Quaternary Science Reviews, 15, 751-760. https://doi.org/10.1016/0277-3791(96)00026-1
  24. Prescott, J.R. and Hutton, J.T., 1994, Cosmic ray contribution to dose rates for luminescence and ESR dating: large depths and long-term time variation. Radiation Measurements, 23, 497-500. https://doi.org/10.1016/1350-4487(94)90086-8
  25. Seong, Y.B. and Yu, B.Y., 2014, Cosmogenic nuclides dating of the Earth surface: Focusing on Korean cases. The Journal of the Petrological Society of Korea, 23, 261-272. https://doi.org/10.7854/JPSK.2014.23.3.261
  26. Smedley, R.K., Duller, G.A.T. and Roberts, H.M., 2015, Bleaching of the post IR-IRSL signal from individual grains of K-feldspar: Implications for single-grain dating. Radiation Measurement, 79, 33-42. https://doi.org/10.1016/j.radmeas.2015.06.003
  27. Thomsen, K.J., Murray, A.S., Jain, M. and Botter-Jensen, L., 2008, Laboratory fading rates of various luminescence signals from feldspar-rich sediment extracts. Radiation Measurements, 43, 1474-1486. https://doi.org/10.1016/j.radmeas.2008.06.002
  28. Thiel, C., Buylaerts, J.P., Murray, A.S., Terhorst, B., Hofer, I., Tsukamoto, S. and Frechen, M., 2011, Luminescence dating of the Stratzing loess profile (Austria) - Testing the potential of an elevated temperature post-IR IRSL protocol. Quaternary International, 234, 23-31. https://doi.org/10.1016/j.quaint.2010.05.018
  29. Wallinga, J., Murray, A.S. and Botter-Jensen, L., 2002, Measurement of the dose in quartz in the presence of feldspar contamination. Radiation Protection Dosimetry, 101, 367-370. https://doi.org/10.1093/oxfordjournals.rpd.a006003
  30. Wallinga, J., Murray, A.S., Duller, G.A.T. and Tomqvist, T.E., 2001, Testing optically stimulated dating of sandsized quartz and feldspar from fluvial deposits. Earth and Planetary Science Letters, 193, 617-630. https://doi.org/10.1016/S0012-821X(01)00526-X
  31. Wintle, A.G., 1973, Anomalous fading of thermoluminescence in mineral samples. Nature, 245, 143-144. https://doi.org/10.1038/245143a0
  32. Wintle, A.G. and Murray, A.S., 2006, A review of quartz optically stimulated luminescence characteristics and their relevance in single-aliquot regeneration dating protocols. Radiation Measurements, 41, 369-391. https://doi.org/10.1016/j.radmeas.2005.11.001
  33. Zhang, J., Tsukamoto, S., Nottebaum, V., Lehmkuhl, F. and Frechen, M., 2015, De plateau and its implications for post-IR IRSL dating of polymineral fine grains. Quaternary Geochronology, 30, 147-153. https://doi.org/10.1016/j.quageo.2015.02.003
  34. Zimmerman, D.W., 1971, Thermoluminescence dating using fine grains from pottery. Archaeometry, 13, 29-52. https://doi.org/10.1111/j.1475-4754.1971.tb00028.x

Cited by

  1. Editorial : Neotectonic and Magma Evolution in the Korean Peninsula and Its Vicinity vol.25, pp.3, 2016, https://doi.org/10.7854/JPSK.2016.25.3.165