배롱나무의 항산화 활성 성분

Chemical Constituents from the Stems of Lagerstroemia indica and Their Anti-oxidant Effect

  • 우경완 (성균관대학교 약학대학 천연물약품화학연구실) ;
  • 심미옥 (한약진흥재단 한약재연구팀) ;
  • 박종일 (한약진흥재단 한약재연구팀) ;
  • 김민석 (한약진흥재단 한약재연구팀) ;
  • 서원세 (성균관대학교 약학대학 천연물약품화학연구실) ;
  • 조현우 (한약진흥재단 한약재연구팀) ;
  • 권학철 (한국과학기술연구원 천연물연구소) ;
  • 박종철 (순천대학교 한약자원개발학과) ;
  • 이강노 (성균관대학교 약학대학 천연물약품화학연구실)
  • Woo, Kyeong Wan (Natural Product Laboratory, School of Pharmacy, Sungkyunkwan University) ;
  • Sim, Mi Ok (Traditional Korean Medicines Research Team, Naional Development Institute of Korea Medicine) ;
  • Park, Eel Jong (Traditional Korean Medicines Research Team, Naional Development Institute of Korea Medicine) ;
  • Kim, Min Suk (Traditional Korean Medicines Research Team, Naional Development Institute of Korea Medicine) ;
  • Suh, Won Se (Natural Product Laboratory, School of Pharmacy, Sungkyunkwan University) ;
  • Cho, Hyun Woo (Traditional Korean Medicines Research Team, Naional Development Institute of Korea Medicine) ;
  • Kwon, Hak Cheol (Natural Product Research Center, Korea Institute of Science and Technology) ;
  • Park, Jong Cheol (Department of Oriental Medicine Resources, Sunchon National University) ;
  • Lee, Kang Ro (Natural Product Laboratory, School of Pharmacy, Sungkyunkwan University)
  • 투고 : 2016.07.11
  • 심사 : 2016.08.30
  • 발행 : 2016.09.30

초록

Phytochemical investigation of the 80% MeOH extract from the stems of Lagerstroemia indica resulted in the isolation of eighteen compounds; four norsesquiterpenes, fourteen phenolic derivatives. Their chemical structures were characterized by spectroscopic methods to be tachioside (1), isotachioside (2), 2,4,6-trimethoxyphenyl ${\beta}$-D-glucopyranoside (3), gallic acid 4-methyl ether (4), protocatechuic acid (5), gallic acid (6), vanillic acid (7), vanillin (8), 2-methoxy-5-hydroxymethyl-phenyl-1-O-(6"-galloyl)-${\beta}$-D-glucopyranoside (9), 2,4,6-trimethoxyphenol-1-O-${\beta}$-D-(6'-O-galloyl)-glucopyranoside (10), 4-hydroxy-3-methoxyphenyl-1-O-(6'-O-galloyl)-${\beta}$-D-glucopyranoside (11), vomifoliol (12), vomifoliol 9-O-${\beta}$-D-glucopyranoside (13), 6R,9R-3-oxo-${\alpha}$-ionol-9-O-${\beta}$-D-glucopyranoside (14), dihydrophaseic acid 4'-O-${\beta}$-D-glucopyranoside (15), ${\beta}$-hydroxypropiovanillone 3-O-${\beta}$-D-glucopyranoside (16), myrciaphenone A (17), and coumaric acid (18). Compounds 1-5 and 7-18 were isolated for the first time from this plant. Compounds 1-18 were investigated for their antioxidant properties using DPPH and ABTS radical scavenging capacity assay, $Fe^{2+}$ chelating, and FRAP assay. It was found that 4, 6, and 11 possessed the highest antioxidant capacities.

키워드

참고문헌

  1. Lee, B. G., Kim, J. H., Ham, S. G. and Lee, C. E. (2014) Study on biological activities of extracts for cosmeceutical development from Lagerstroemia indica L. branch. Korean J. Plant Res. 27: 29-34. https://doi.org/10.7732/kjpr.2014.27.1.029
  2. 이창복 (2003) 원색대한식물도감, 789, 향문사, 서울.
  3. Lee, I. S., Youn, U. J., Kim, H. J., Min, B. S., Kim, J. S. and Bae, K. H. (2011) Biphenyl and biphenyl ether quinolizidine N-oxide alkaloids from Lagerstroemia indica L. Planta Med. 77: 2037-2041. https://doi.org/10.1055/s-0031-1280064
  4. Woo, K. W., Suh, W. S., Subedi, L., Kim, S. Y., Choi, S. U., Kim, K. H. and Lee, K. R. (2015) Phenolic derivatives from the stems of Lagerstroemia indica and their biological activity. Heterocycles 91: 2355-2366. https://doi.org/10.3987/COM-15-13328
  5. Woo, K. W., Cha, J. M., Choi, S. U. and Lee, K. R. (2016) A new triterpene glycoside from the stems of Lagerstroemia indica. Arch. Pharm. Res. 39: 631-635. https://doi.org/10.1007/s12272-016-0746-4
  6. Kim, H. J., Lee, I. S., Youn, U. J., Chen, Q. C., Ngoc, T. M., Ha, D. T., Liu, H., Min, B. S., Lee, J. Y., Seong, R. S. and Bae, K. H. (2009) Biphenylquinolizidine alkaloids from Lagerstroemia indica. J. Nat. Prod. 72: 749-752. https://doi.org/10.1021/np800619g
  7. Cho, H. K., Suh, W. S., Kim, K. H., Kim, S. Y. and Lee, K. R. (2014) Phytochemical constituents of Salsola komarovii and their effects on NGF induction. Nat. Prod. Sci. 20: 95-101.
  8. Chang, R., Wang, C., Zeng, Q., Guan, B., Zhang, W. and Jin, H. (2013) Chemical constituents of the stems of Celastrus rugosus. Arch. Pharm. Res. 36: 1291-1301. https://doi.org/10.1007/s12272-013-0145-z
  9. Chaubal, R., Mujumdar, A. M., Misar, A. and Deshpande, N. R. (2005) Isolation of phenolic compounds from Acacia nilotica with topical antiinflammatory activity. Asian J. Chem. 17: 1595-1599.
  10. Lee, S. Y., Kim, K. H., Lee, I. K., Lee, K. H., Choi, S. U. and Lee, K. R. (2012) A new flavonol glycoside from Hylomecon vernalis. Arch. Pharm. Res. 35: 415-421. https://doi.org/10.1007/s12272-012-0303-8
  11. Zhang, H. M., Wang, C. F., Shen, S. M., Wang, G. L., Liu, P., Liu, Z. M., Wang, Y. Y., Du, S. S., Liu, Z. L. and Deng, Z. W. (2012) Antioxidant phenolic compounds from Pu-erh tea. Molecules 17:14037-14045. https://doi.org/10.3390/molecules171214037
  12. Sun, L. X., Fu, W., Ren, J., Xu, L., Bi, K. S. and Wang, M. W. (2006) Cytotoxic constituents from Solanum lyratum. Arch. Pharm. Res. 29: 135-139. https://doi.org/10.1007/BF02974274
  13. Kim, H., Yi, J. M., Kim, N. S., Lee, Y. J., Kim, J., Oh, D. S., Oh, S. M., Bang, O. S. and Lee, J. Cytotoxic compounds from the fruit of Vitex rotundifolia against human cancer cell lines. J. Korean Soc. Appl. Biol. Chem. 55: 433-437.
  14. De Leo, M., Braca, A., De Tommasi, N., Norscia, I., Morelli, I., Battinelli, L. and Mazzanti, G. (2004) Phenolic compounds from Baseonema acuminatum leaves: isolation and antimicrobial activity. Planta Med. 70: 841-846. https://doi.org/10.1055/s-2004-827233
  15. Saijo, R., Nonaka, G. and Nishioka, I. (1989) Tannins and related compounds. Part 82. Phenol glucoside gallates from Mallotus japonicas. Phytochemistry 28: 2443-2446. https://doi.org/10.1016/S0031-9422(00)98001-4
  16. Ishimaru, K., Nonaka, G. and Nishioka, I. (1987) Tannins and related compounds. Part 54. Phenolic glucoside gallates from Quercus mongolica and Q. acutissima. Phytochemistry 26: 1147-1152. https://doi.org/10.1016/S0031-9422(00)82367-5
  17. Kuang, H., Yang, B., Xia, Y. and Feng, W. (2008) Chemical constituents from the flower of Datura metel L.. Arch. Pharm. Res. 31: 1094-1097. https://doi.org/10.1007/s12272-001-1274-6
  18. Champavier, Y., Comte, G., Vercauteren, J., Allais, D. P. and Chulia, A. J. (1999) Norterpenoid and sesquiterpenoid glucosides from Juniperus phoenicea and Galega officinalis. Phytochemistry 80: 1219-1223.
  19. Xiang, Y., Yang, S., Zhan, Z. and Yue, J. (2004) Terpenoids and phenols from Taiwania flousiana. Acta. Bot. Sin. 46: 1002-1008.
  20. Lee, K. R., Hong, S. W., Kwak, J. H., Pyo, S. and Jee, O. P. (1996) Phenolic constituents from the aerial parts of Artemisia stolonifera. Arch. Pharm. Res. 19: 231-234. https://doi.org/10.1007/BF02976896
  21. Lee, S. Y., Choi, S. U., Lee, J. H., Lee, D. U. and Lee, K. R. (2010) A new phenylpropane glycoside from the rhizome of Sparganium stoloniferum. Arch. Pharm. Res. 33: 515-521. https://doi.org/10.1007/s12272-010-0404-1
  22. Reis, F. S., Martins, A., Barros, L. and Ferreira, I.C. (2012) Antioxidant properties and phenolic profile of the most widely appreciated cultivated mushrooms: a comparative study between in vivo and in vitro samples. Food. Chem. Toxicol. 50: 1201-1207. https://doi.org/10.1016/j.fct.2012.02.013
  23. Kim, H. Y., Lee, Y. A. and Cho, E. J. (2012) Free radical scavenging effect and protective activity from oxidative stress of broccoli flowers and sprouts. CNU J. Agric. Sci. 39: 81-86. https://doi.org/10.7744/cnujas.2012.39.1.081
  24. Sakanaka, S., Tachibana, Y. and Okada, Y. (2005) Preparation and antioxidant properties of extracts of Japanese persimmon leaf tea (kakinoha-cha). J. Food Chem. 89: 569-575. https://doi.org/10.1016/j.foodchem.2004.03.013