DOI QR코드

DOI QR Code

Utility of the pat gene as a selectable marker gene in production of transgenic Dunaliella salina

  • Jung, Hyo Sun (Center for Risk Assessment of Oceans and Fisheries Living Modified Organisms, Pukyong National University) ;
  • Kim, Dong Soo (Department of Marine Bio-Materials and Aquaculture, Pukyong National University)
  • Received : 2016.04.26
  • Accepted : 2016.08.19
  • Published : 2016.09.30

Abstract

Background: The objective of this study was to develop an efficient selectable marker for transgenic Dunaliella salina. Results: Tests of the sensitivity of D. salina to the antibiotic chloramphenicol and the herbicide Basta$^{(R)}$ showed that cells ($1.0{\times}10^6cells/ml$) treated with 1000 or $1500{\mu}g/ml$ chloramphenicol died in 8 or 6 days, respectively, whereas D. salina cells ($1.0{\times}10^6cells/ml$) treated with 5, 10, 20, or $40{\mu}g/ml$ Basta$^{(R)}$ died in 2 days. Therefore, D. salina is more sensitive to Basta$^{(R)}$ than to chloramphenicol. To examine the possibility of using the phosphinothricin N-acetyltransferase (pat) gene as a selectable marker gene, we introduced the pat genes into D. salina with particle bombardment system under the condition of helium pressure of 900 psi from a distance of 3 cm. PCR analysis confirmed that the gene was stably inserted into the cells and that the cells survived in $5{\mu}g/ml$ Basta$^{(R)}$, the medium used to select the transformed cells. Conclusions: The findings of this study suggest that the pat gene can be used as an efficient selectable marker when producing transgenic D. salina.

Keywords

References

  1. Akbari F, Eskandani M, Khosroushahi AY. The potential of transgenic green microalgae: a robust photobioreactor to produce recombinant therapeutic proteins. World J Microb Biot. 2014;30:2783-96. https://doi.org/10.1007/s11274-014-1714-0
  2. Banerjee A, Sharma R, Chisti Y, Banerjee UC. Botryococcus braunii: a renewable source of hydrocarbons and other chemicals. Crit Rev Biotechnol. 2002;22:245-79. https://doi.org/10.1080/07388550290789513
  3. Bohorova N. Biolistic and Agrobacterium-Mediated Plant Transformation (Protocols). in Laboratory protocols: CIMMYT Applied genetic engineering laboratory. International Maize and Wheat Improvement Center. Mexico; 1999. p. 39-43.
  4. Borowitzka MA, Siva CJ. The taxonomy of the genus Dunaliella (Chlorophyta, Dunaliellales) with emphasis on the marine and halophilic species. J Appl Phycol. 2007;19:567-90. https://doi.org/10.1007/s10811-007-9171-x
  5. Cerutti H, Johnson AM, Gillham NW, Boynton JE. A eubacterial gene conferring spectinomycin resistance on Chlamydomonas reinhardtii: integration into the nuclear genome and gene expression. Genetics. 1997;145:97-110.
  6. Chisti Y. Biodiesel from microalgae beats bioethanol. Trends Biotechnol. 2008;26:126-31. https://doi.org/10.1016/j.tibtech.2007.12.002
  7. Coil JM. Review. Methodologies for transferring DNA into eukaryotic microalgae. Span J Agric Res. 2006;4:316-30. https://doi.org/10.5424/sjar/2006044-209
  8. Feng S, Li X, Xu Z, Qi J. Dunaliella salina as a novel host for the production of recombinant proteins. Appl Microbiol Biotechnol. 2014;98:4293-300. https://doi.org/10.1007/s00253-014-5636-4
  9. Geng DG, Wang YQ, Wang P, Li WB, Sun YR. Stable expression of hepatitis B surface antigen gene in Dunaliella salina (Chlorophyta). J Appl Phycol. 2003;15:451-56. https://doi.org/10.1023/B:JAPH.0000004298.89183.e5
  10. Guillard RR, Ryther JH. Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt and Detonula confervacea (Cleve) Gran. Can J Microbiol. 1962;8:229-39. https://doi.org/10.1139/m62-029
  11. Hallmann A, Rappel A. Genetic engineering of the multicellular green alga Volvox: a modified and multiplied bacterial antibiotic resistance gene as a dominant selectable marker. Plant J. 1999;17:99-109. https://doi.org/10.1046/j.1365-313X.1999.00342.x
  12. Han D, Fan Y, Hu Z. An Evaluation of Four Phylogenetic Markers in Nostoc: Implications for Cyanobacterial Phylogenetic Studies at the Intrageneric Level. Curr Microbiol. 2009;58:170-6. https://doi.org/10.1007/s00284-008-9302-x
  13. Hejazi MA, Barzegari A, Gharajeh NH, Hejazi MS. Introduction of a novel 18S rDNA gene arrangement along with distinct ITS region in the saline water microalga Dunaliella. Saline Syst. 2010;6:4. https://doi.org/10.1186/1746-1448-6-4
  14. Hoerlein G. Glufosinate (phosphinothricin), a natural amino acid with unexpected herbicidal properties. Rev Environ Contam Toxicol. 1994;138:73-145.
  15. Hosseini Tafreshi A, Shariati M. Dunaliella biotechnology: methods and applications. J Appl Microbiol. 2009;107:14-35. https://doi.org/10.1111/j.1365-2672.2009.04153.x
  16. Jiang GZ, Lu YM, Niu XL, Xue LX. The actin gene promoter-driven bar as a dominant selectable marker for nuclear transformation of Dunaliella Salina. Acta Genet Sin. 2005;32:424-33.
  17. Kang GR, Song HY, Kim DS. Toxicity and Effects of the Herbicide Glufosinate-Ammonium (Basta) on the Marine Medaka Oryzias dancena. Fisheries and Aquatic Science. 2014;17:105-13. https://doi.org/10.5657/FAS.2014.0105
  18. Li J, Xue LX, Yan HX, Wang LL, Liu LL, Lu YM, Xie H. The nitrate reductase gene-switch: a system for regulated expression in transformed cells of Dunaliella salina. Gene. 2007;403:132-42. https://doi.org/10.1016/j.gene.2007.08.001
  19. Mitra M, Melis A. Optical properties of microalgae for enhanced biofuels production. Opt Express. 2008;16:21807-20. https://doi.org/10.1364/OE.16.021807
  20. Potvin G, Zhang Z. Strategies for high-level recombinant protein expression in transgenic microalgae: A review. Biotechnol Adv. 2010;28:910-8. https://doi.org/10.1016/j.biotechadv.2010.08.006
  21. Preetha K, John L, Sukumaran Subin C, Kizhakkedath Vijayan K. Phenotypic and genetic characterization of Dunaliella (Chlorophyta) from Indian salinas and their diversity. Aquat Biosyst. 2012;8:27. https://doi.org/10.1186/2046-9063-8-27
  22. Sanford JC, Smith FD, Russell JA. Optimizing the biolistic process for different biological applications, Methods Enzymol. 1993;217:483-509.
  23. Swofford DL. PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods). Version 4. Sinauer Associates, Sunderland, Massachusetts; 2002.
  24. Tan CP, Qin S, Zhang Q, Jiang P, Zhao FQ. Establishment of a micro-particle bombardment transformation system for Dunaliella salina. J Microbiol. 2005;43:361-5.
  25. Thompson JD, Plewniak F, Poch O. A comprehensive comparison of multiple sequence alignment programs. Nucleic Acids Res. 1999;27:2682-90. https://doi.org/10.1093/nar/27.13.2682
  26. Tran D, Vo T, Portilla S, Louime C, Doan N, Mai T, Tran D, Ho T. Phylogenetic study of some strains of Dunaliella. Am J Environ Sci. 2013;9:317-21. https://doi.org/10.3844/ajessp.2013.317.321
  27. Walker TL, Purton S, Becker DK, Collet C. Microalgae as bioreactors. Plant Cell Rep. 2005;24:629-41. https://doi.org/10.1007/s00299-005-0004-6
  28. Wang TY, Xue LX, Hou WH, Yang BS, Chai YR, Ji XA, Wang YF. Increased expression of transgene in stably transformed cells of Dunaliella salina by matrix attachment regions. Appl Microbiol Biotechnol. 2007;76:651-7. https://doi.org/10.1007/s00253-007-1040-7
  29. Ziemienowicz A. Plant selectable markers and reporter genes. Acta Physiol Plant. 2001;23:363-74. https://doi.org/10.1007/s11738-001-0045-6