DOI QR코드

DOI QR Code

Pseudomonas alkylphenolica KL28에 존재하는 3종류의 p-cresol 분해 경로 및 유전자 발현

Identification of three pathways for p-cresol catabolism and their gene expression in Pseudomonas alkylphenolica KL28

  • 성진일 (창원대학교 생명보건학부) ;
  • 이경 (창원대학교 생명보건학부)
  • Sung, Jin Il (Department of Bio Health Science, Changwon National University) ;
  • Lee, Kyoung (Department of Bio Health Science, Changwon National University)
  • 투고 : 2016.08.24
  • 심사 : 2016.09.09
  • 발행 : 2016.09.30

초록

본 연구에서는 p-cresol 초기 분해에 관여하는 기존의 lap과 pcu 유전자군 외에 새로운 pch 유전자군을 Pseudomonas alkylphenolica KL28로 부터 동정하였다. 이 유전자군(pchACXF-pcaHG-orf4-pcaBC)은 p-cresol을 ${\beta}$-carboxy-cis,cis-muconate로의 전환을 촉매할 수 있는 효소를 암호화하는 것을 알 수 있었다. 이 유전자 군은 영국에서 분리된 Pseudomonas putida NCIMB 9866과 9869의 plasmid에서 유래된 pch 유전자 군과 동일하여, 이들 유전자군은 종간 horizontal gene transfer로 전달되었을 가능성을 제시하였다. 각 유전자군의 관련 유전자의 변이와 gfp 레포터를 갖는 프로모터의 발현 분석을 통해 3개의 분해 유전자군이 모두 p-cresol의 분해에 관여하는 것을 알 수 있었으며, pch 유전자는 p-cresol에 의해 유도되며, 고체 및 액체 배지에서도 pcu 유전자군이 가장 높게 발현되는 것을 확인할 수 있었다. 또한 pcu 유전자 변이주는 p-cresol을 이용하여 버섯모양의 공중체(aerial structure) 형성하지 않았으므로, 탄소원의 이용 속도가 다세포 구조 형성에 영향을 주는 중요한 요소 중의 하나임을 알 수 있었다.

Previously our laboratory showed that Pseudomonas alkylphenolica KL28 possesses two different lap and pcu gene clusters for p-cresol catabolism. In this study, additional gene cluster (pchACXF-pcaHG-orf4-pcaBC) has been identified to encode enzymes necessary for catabolism of p-cresol to ${\beta}$-carboxy-cis,cis-muconate. This gene cluster showed almost identical nucleotide sequence homologies to those in the plasmid of Pseudomonas putida NCIMB 9866 and 9869, British origins, indicating the possibility of a horizontal gene transfer. Through mutagenesis of each gene cluster and gfp-based promoter reporter assays, it has been shown that the three gene clusters are functionally operated and pch genes are induced by p-cresol. Furthermore, the pcu gene cluster of the three was shown to be dominantly expressed in utilization of p-cresol. Mutation of the pcu gene was defective in aerial structure formation under p-cresol vapor, indicating the utilization rate of carbon source is one of key elements for the multicellular development of this strain.

키워드

참고문헌

  1. Bayly, R.C., Dagley, S., and Gibson, D.T. 1966. The metabolism of cresols by species of Pseudomonas. Biochem. J. 101, 293-301. https://doi.org/10.1042/bj1010293
  2. Chang, M.C., Chang, H.H., Chan, C.P., Yeung, S.Y., Hsien, H.C., Lin, B.R., Yeh, C.Y., Tseng, W.Y., Tseng, S.K., and Jeng, J.H. 2014. p-Cresol affects reactive oxygen species generation, cell cycle arrest, cytotoxicity and inflammation/atherosclerosis-related modulators production in endothelial cells and mononuclear cells. PLoS One 9, e114446. https://doi.org/10.1371/journal.pone.0114446
  3. Chang, A.C. and Cohen, S.N. 1978. Construction and characterization of amplifiable multicopy DNA cloning vehicles derived from the P15A cryptic miniplasmid. J. Bacteriol. 134, 1141-1156.
  4. Chen, Y.F., Chao, H., and Zhou, N.Y. 2014. The catabolism of 2,4-xylenol and p-cresol share the enzymes for the oxidation of para-methyl group in Pseudomonas putida NCIMB 9866. Appl. Microbiol. Biotechnol. 98, 1349-1356. https://doi.org/10.1007/s00253-013-5001-z
  5. Cho, J.H., Jung, D.K., Lee, K., and Rhee, S. 2009. Crystal structure and functional analysis of the extradiol dioxygenase LapB from a long-chain alkylphenol degradation pathway in Pseudomonas. J. Biol. Chem. 284, 34321-34330. https://doi.org/10.1074/jbc.M109.031054
  6. Cho, A.R., Lim, E.J., Veeranagouda, Y., and Lee, K. 2011. Identification of a p-cresol degradation pathway by a GFP-based transposon in Pseudomonas and its dominant expression in colonies. J. Microbiol. Biotechnol. 21, 1179-1183. https://doi.org/10.4014/jmb.1104.04006
  7. Cunane, L.M., Chen, Z.W., Shamala, N., Mathews, F.S., Cronin, C.N., and McIntire, W.S. 2000. Structures of the flavocytochrome p-cresol methylhydroxylase and its enzyme-substrate complex: gated substrate entry and proton relays support the proposed catalytic mechanism. J. Mol. Biol. 295, 357-374. https://doi.org/10.1006/jmbi.1999.3290
  8. Dagley, S. and Patel, M.D. 1957. Oxidation of p-cresol and related compounds by a Pseudomonas. Biochem. J. 66, 227-233. https://doi.org/10.1042/bj0660227
  9. Dennis, J.J. and Zylstra, G.J. 1998. Plasposons: modular self-cloning minitransposon derivatives for rapid genetic analysis of gramnegative bacterial genomes. Appl. Environ. Microbiol. 64, 2710-2715.
  10. Jeong, J.J., Kim, J.H., Kim, C.K., Hwang, I., and Lee, K. 2003. 3-and 4-alkylphenol degradation pathway in Pseudomonas sp. strain KL28: genetic organization of the lap gene cluster and substrate specificities of phenol hydroxylase and catechol 2,3-dioxygenase. Microbiology 149, 3265-3277. https://doi.org/10.1099/mic.0.26628-0
  11. Joesaar, M., Heinaru, E., Viggor, S., Vedler, E., and Heinaru, A. 2010. Diversity of the transcriptional regulation of the pch gene cluster in two indigenous p-cresol-degradative strains of Pseudomonas fluorescens. FEMS Microbiol. Ecol. 72, 464-475. https://doi.org/10.1111/j.1574-6941.2010.00858.x
  12. Kim, J., Fuller, J.H., Cecchini, G., and McIntire, W.S. 1994. Cloning, sequencing, and expression of the structural genes for the cytochrome and flavoprotein subunits of p-cresol methylhydroxylase from two strains of Pseudomonas putida. J. Bacteriol. 176, 6349-6361. https://doi.org/10.1128/jb.176.20.6349-6361.1994
  13. Kim, J.Y., Kim, J.K., Lee, S.O., Kim, C.K., and Lee, K. 2005. Multicomponent phenol hydroxylase-catalysed formation of hydroxyindoles and dyestuffs from indole and its derivatives. Lett. Appl. Microbiol. 41, 163-168. https://doi.org/10.1111/j.1472-765X.2005.01734.x
  14. Kukor, J.J. and Olsen, R.H. 1992. Complete nucleotide sequence of tbuD, the gene encoding phenol/cresol hydroxylase from Pseudomonas pickettii PKO1, and functional analysis of the encoded enzyme. J. Bacteriol. 174, 6518-6526. https://doi.org/10.1128/jb.174.20.6518-6526.1992
  15. Lee, K. 2013. Construction of overexpression vectors and purification of the oxygenase component of alkylphenol hydroxylase of Pseudomonas alkylphenolia. Korean J. Microbiol. 49, 95-98. https://doi.org/10.7845/kjm.2013.008
  16. Lee, K., Lim, E.J., Kim, K.S., Huang, S.L., Veeranagouda, Y., and Rehm, B.H. 2014. An alginate-like exopolysaccharide biosynthesis gene cluster involved in biofilm aerial structure formation by Pseudomonas alkylphenolia. Appl. Microbiol. Biotechnol. 98, 4137-4148. https://doi.org/10.1007/s00253-014-5529-6
  17. Lee, K. and Veeranagouda, Y. 2009. Ultramicrocells form by reductive division in macroscopic Pseudomonas aerial structures. Environ. Microbiol. 11, 1117-1125. https://doi.org/10.1111/j.1462-2920.2008.01841.x
  18. Li, D., Yan, Y., Ping, S., Chen, M., Zhang, W., Li, L., Lin, W., Geng, L., Liu, W., Lu, W., and Lin, M. 2010. Genome-wide investigation and functional characterization of the beta-ketoadipate pathway in the nitrogen-fixing and root-associated bacterium Pseudomonas stutzeri A1501. BMC Microbiol. 10, 36. https://doi.org/10.1186/1471-2180-10-36
  19. Miller, W.G., Leveau, J.H., and Lindow, S.E. 2000. Improved gfp and inaZ broad-host-range promoter-probe vectors. Mol. Plant Microbe Interact. 13, 1243-1250. https://doi.org/10.1094/MPMI.2000.13.11.1243
  20. Mulet, M., Sanchez, D., Lalucat, J., Lee, K., and Garcia-Valdes, E. 2015. Pseudomonas alkylphenolica sp. nov., a bacterial species able to form special aerial structures when grown on p-cresol. Int. J. Syst. Evol. Microbiol. 65, 4013-4018. https://doi.org/10.1099/ijsem.0.000529
  21. Naessens, M. and Vandamme, E.J. 2003. Multiple forms of microbial enzymes. Biotechnol. Lett. 25, 1119-1124. https://doi.org/10.1023/A:1024540902848
  22. Schafer, A., Tauch, A., Jager, W., Kalinowski, J., Thierbach, G., and Puhler, A. 1994. Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum. Gene 145, 69-73. https://doi.org/10.1016/0378-1119(94)90324-7
  23. Shingler, V., Powlowski, J., and Marklund, U. 1992. Nucleotide sequence and functional analysis of the complete phenol/3,4-dimethylphenol catabolic pathway of Pseudomonas sp. strain CF600. J. Bacteriol. 174, 711-724. https://doi.org/10.1128/jb.174.3.711-724.1992
  24. Stanier, R.Y., Palleroni, N.J., and Doudoroff, M. 1966. The aerobic pseudomonads: a taxomonic study. J. Gen. Microbiol. 43, 159-271. https://doi.org/10.1099/00221287-43-2-159
  25. Veeranagouda, Y., Basavaraja, C., Bae, H.S., Liu, K.H., and Lee, K. 2011. Augmented production of poly-${\beta}$-D-mannuronate and its acetylated forms by Pseudomonas. Process Biochem. 46, 328-334. https://doi.org/10.1016/j.procbio.2010.09.009
  26. Veeranagouda, Y., Lee, K., Cho, A.R., Cho, K., Anderson, E.M., and Lam, J.S. 2011. Ssg, a putative glycosyltransferase, functions in lipo-and exopolysaccharide biosynthesis and cell surface-related properties in Pseudomonas alkylphenolia. FEMS Microbiol. Lett. 315, 38-45. https://doi.org/10.1111/j.1574-6968.2010.02172.x
  27. Veeranagouda, Y., Lim, E.J., Kim, D.W., Kim, J.K., Cho, K., Heipieper, H.J., and Lee, K. 2009. Formation of specialized aerial architectures by Rhodococcus during utilization of vaporized p-cresol. Microbiology 155, 3788-3796. https://doi.org/10.1099/mic.0.029926-0
  28. Wright, A. and Olsen, R.H. 1994. Self-mobilization and organization of the genes encoding the toluene metabolic pathway of Pseudomonas mendocina KR1. Appl. Environ. Microbiol. 60, 235-242.
  29. Yan, Z., Wei, X., Yuan, Y., Li, Z., Li, D., Liu, X., and Gao, L. 2016. Deodorization of pig manure using lignin peroxidase with different electron acceptors. J. Air Waste Manag. Assoc. 66, 420-428. https://doi.org/10.1080/10962247.2016.1144660
  30. Yun, J.I., Cho, K.M., Kim, J.K., Lee, S.O., Cho, K., and Lee, K. 2007. Mutation of rpoS enhances Pseudomonas sp. KL28 growth at higher concentrations of m-cresol and changes its surface-related phenotypes. FEMS Microbiol. Lett. 269, 97-103. https://doi.org/10.1111/j.1574-6968.2006.00610.x